108

MICROPROCESSOR ARCHITECTURE AND DESIGN FOR GaAs
TECHNOLOGY
uvodni referat na MIEL*88 v Zagrebu

Veljko Milutinovi¢

ABSTRACT

GaAs technology has reached the VLSI level of
integration. At the same power consumption, it is
up to about half order of magnitude faster than
Silicon technology, and up to several orders of
magnitude more radiation hard. However, it im-
poses radical changes in the area of computer ar-
chitecture and computer design. This paper ex-
plains several processor design strategies for
GaAs technology, and emphasizes the RISC stra-
tegy. It discusses the impacts of GaAs technology
on the design of CPU resources (adder, register
file, etc.), systemresources (cache, coprocessing,
etc.), and system software resources (code op-
timization, hardware-to-software migration, etc.).
It summarizes the essence of one 32-bit GaAs mi-
croprocessor design, and reviews the lessons le-
arned. Finally, it concentrates on the synergism
methodology for GaAs micorprocessor design;
actually, on its most promising aspect. the ca-
talytic migration.

1. INTRODUCTION

Possible approaches to microprocessor de-
sign for GaAs technology include: bit-slice, func-
tional-division, and RISC (>4 For a number of
reasons, the RISC approach seems to be the most
promising; however, the design has to be done
with a maximal care, and a maximal awareness of
the requirements of the GaAs technology (5,6,7).
[ssues that present special problems include, but
are not lomited to: high ratio of off-chip to on-chip
delays and storage recess times (high ,off-on"),
small on-chip transistor count, plus a relatively
high sensitivity of gate delays on fan-in and fan-
out.

The RCA's design of a 32-bit GaAs RISC mi-
croprocessor represents one of the first three ef-
forts in its domain. General architecture and the
pipeline structure of this machine are given in the
enclosed figure. Further details can be found in
(13). Experiments that have preceeded the design
are explained in 2.18) Discussions of other re-
levant issues can be found in 8:8:9:10:11.14.15).

* Copyright *o* 1988 by Purdue University. Reprinted
with permission of Purdue University.

2. SUMMARY OF THE BOTTLENECKS

Today it is not a problem to design and imple-
ment a 32-bit GaAs microprocessor. The problem
is how to design it so that it is close to N times
faster (for compiled HLL code) than its Silicon cou-
nterpart, where N is the ratio of GaAs/Silicon spe-
eds on the gate level. Benchmarking on the final
design has shown that the actual speed (for com-
piled HLL code) is much below the peak speed of
200 MIPS (for various benchmarks, from about 80
MIPS to about 120 MIPS).

The major bottlenecks are: (a) GaAs techno-
logy itself (practical speed and radiation hardness
are below the theoretical expectations), (b) Pack-
aging and interconnection technology (this bot-
tleneck seems to be the most difficult to improve),
(c) Architecture (architectural constructs are ne-
eded that would better address the requirements
of the GaAs design environments, and (d) Com-
piler technology (deep pipelines impose special
restrictions not found in Silicon designs).

The purpose of this paper is to concentrate on
some new elements of the architecture/compiler
synergism methodology that are believed to be
able to solve some of the major problems that limit
the N-times speed-up.

3. CATALYTIC MIGRATION

Common trend in VLS| processor/computer
design for technologies with a relatively large on-
chip transistor count, and a relatively low ratio of
off-chip to on-chip delays (e.g., CMOS Silicon), is
to migrate some of the system software (typically,
operating system) into hardware (typically, firm-
ware). The research at Purdue University suggests
that the solution for technologies with a relatively
small on-chip transistor count, and a relatively lar-
ge ratio of off-chip to on-chip delays (the case not
only with GaAs) is in an opposite type of migra-
tion, from hardware (whatever that typically me-
ans) to system software (typically, optimizing com-
piler). The variety of hardware resources that could
bi migrated into the optimizing compilet is surpris-
ingly large. We are just not used to thinking in that
direction, sometimes we don't dare.

109

N T 7 I 0 T T 1 > I ? [
— — &
r = T
/ 1 ;I*L
e) S [—j "J—_J
.| ﬁ un :] [ALUL _N uRr
Y e || Tj I
GRiO: 157 | | PIHIDT | e =
< DATAGUT ARITHNTIC 32"‘” L owic
(F((}F\DDR@T bl _*Lf” 'A_ SHIFTCQ e

| TSI | i I et -

T [Pl —fil_j]
- T vosic [=XEXT | o
L Tx =] -

. = BRASUP ALLOUT — |
ey INT _(CNAR 1 CtK
> COP

5 —— TL‘ib

A ff,f]_j 41
— 7t \ =
o \"I:/ - 4\—([por
0 T [[) 1 » [I ? I 2 I !

OPERAND
FETCH

INSTRUCTION
FETCH
STAGE

STAGE

WAIT WAIT

STAGE

ALU
OPERATION

0};«5&’1\1{‘1(‘):‘ ME \IORY
WAIT WVAIT OPERA
WRITE-BACK M WAl \VRITE-BACK
STAGE STAGE

Slika 1

The rationales behind the usefuiness of this mi-
gration are as follows. If the ratio of off-chip to on-
chip delays is fairly high, then the penaity (interms
of the number of clock cycles) for going off the
processor chip is fairly high, too. The solution is to
Jnvest" as much processor chip area into the re-
sources that have been proven useful in reducing
the frequency of going off the processor chip, or
Jfrequency reductors" (e.g., larger register file, or
a larger on-chip cache memory*). However, if
technology is characterized with a small on-chip
transistor count, then the on-chip implementation
of frequency reductors" may not befeasible, since
these resources are typically useful only if large
enough. One way to make their implementation
feasible is to migrate some of the traditional hard-
ware resources into the optimizing compiler, and
make extra room for ,frequency reductors” to be
properly implemented.

The earliest and the most popular examples of
the hardware-to- compiler migration are found in

the RISC research of late 70's and early 80s
(18.19.20) These examplesinclude delayed branch-
ing, software implementation of the pipeline inter-
lock, and instruction scheduling that eliminates the
need for internal forwarding. One possible clas-
sification and generalization of the problem is gi-
venin"wherethe special attention was dedicated
to the synergistic effects that the hardware-to-
compiler migration can produce. An important in-
puls to this research comes from ') It is the first
torecognize thefactthat, in some cases, the syner-
gistic effects can be more easily achieved, or per-
formance gains further improved, if the migration
is accompanied by an addition of some simpie
hardware to assist in the utilization of static com-
pile-time decisions. Dietz and Chi (7) refer to this
type of migration as integration (of compile-time
information and run-time hardware).

*After a certain point, these don't serve as ,frequency
reductors” any more,

Paper (7 discusses several migration exam-

ples (e.g., migration of complex arithmetic func
tions by implementing them out of add /subtract,
shift/rotate, and increment/decrement, migration
of complex addressing modes by implementing
them out of the simplest ones, and migration of
deskewing algrorithm, in skewed memory sys-
tems). It also discusses several Integration exam-
ples (e.g., migration of cache pollution control,
squashing branches, and CRegs).

The main purpose of this paper is to introduce
and analyze further examples of migration and es-
pecially integration. Here, term migration will be
substituted by the term direct migration. Term in-
tegration will bi substituted by the term catalytic
migration. The later is to underline the fact that the
newly added hardware should be much less in
compexity than the migrated hardware, and sho-
uld predominantly serve as a catalyst which ena-
bles an effective synergetic process to take place.

This paper also discusses the issues of impor-
tance for the implementation and evaluation of dif-
ferent migration candidates.

4. RELEVANT ISSUES

Further classification of direct and catalytic mi-
grations is straightforward. Basic elements of a
processor/computer system are control, arithme-
tic, storage, and /0. Therefore, it is natural that
examples of both direct and catalytic migration are
classified in the same way.

Any migration is not necessarily useful, for gi-
ven criteria. Assume that the criterion is the speed
of compiled HLL code, and that the VLS| chip area
isfixed. After a function is migrated, it may become
slower (typical case). The slowdown is highly de-
pendent on the implementation of the migration,
i.e. on the utilized compile-time algorithm; the two
main components of each migration (run-time pro-
cedure and compile-time procedure) should be
treated jointly. Evaluation of the slowdown is an
important problem. On the other hand, the rele-
ased VLS| area is ,invested" into resources which
speed-up the compiled HLL code. The speedup is
dependent both on the type of new resource and
onthe capability of the optimizing compiler to util-
ize that resource efficiently. Again, the two issues
should be treated jointly. Evaluation of the speed-
up is another important problem.

Since it is assumed here that the overall VL.S!
area did not change, the VLSI area for added re-
sources should be equal to the area under the

removed resource(s), minus the area under the
catalytic resource(s), if any.

One way to look into the migration issue is as
follows. The major problems to solve are:

+ 1. Invention of a new migration (direct or

catalytic).

+ 2. Specification of the run-time architecture
(and possible modifications of the machine-
level instruction set).

« 3. Determination of the saved VLSI area
(which is implementation tools dependent).

» 4. Specification of the compile-time proce-
dures (for new migrations), plus improve-
ments for old migrations (not subject of
this research).

» 5. Determination of the slowdown due to
migration (in general, could be done em-
pirically or analytically).

Due to a variety of problems involved, the best
results are accomplished through a joint effort of
researchers withthe backgrounds in computer de-
sign, computer architecture, VL.SI design, com-
piter design, and performance evaluation. The sy-
nergism methodology gives the best resuits thro-
ugh synergistic effects of joint research of an in-
terdisciplinary team.

5. EXAMPLES

This section briefly introduces a number of re-
cently recognized catalytic migrations, and under-
lines the migration issues of relevance for com-
puter design and computer architecture. Issues of
relevance for VLS| design (i.e., area estimation),
compiler design (i.e., compile-time algorithms),
and performance evaluation (i.e., speed-up esti-
mation) are the subject of the follow-up work. Here
is the list of candidates for the catalytic migration:

+ 1. Catalytic running of two different
programs in the branch delay slot of each
other, with a catalyst which controls the ex-
pansion of the code ,fanout" tree.

+ 2. Catalytic migration of a 2-read-port
register file into a 1- read-port register file,
with a catalyst which faciliates the ,bang-
bang" operation.

« 3. Catalytic migration of post-branch
NOOPs though the use of IGNORE-like in-
structions.

» 4. Catalytic migration of the PC-stack, with
a catalyst which enables the usage of in-
structions rather than their addresses.

« 5. Catalytic migration of static RAM into
dynamic RAM for on-chip cache memories.

111

+ 6. Catalytic migration of the destination
control for loading from multidistance
memoties.

» 7. Catalytic migration of the windowed
register file.

» 8. Catalytic migration of the bus sizing.

» 9. Catalytic migration of the remote-PC.

+ 10. Catalytic migration of some elements
of instruction/data buffers.

More details on each of the above could be
found in @Y. The common thread in all above ex-
amples is the existence of a catalyst which is in
some cases not absolutely necessary, but helps
to increase the efficiency. In many cases a new in-
struction type serves as a catalyst.

6. CONCLUSION

We strongly believe that the future of GaAs mi-
croprocessor is in a further exploitation of the ca-
talytic migration design methodology. In our opi-
nion, future success of GaAs microprocessors de-
pends largely on our ability to come up with new
and efficient forms of catalytic migration. Of co-
urse, efficient implementation (in the architecture
and the compiler) is an important prerequisite of
the final success.

7. LIST OF RELATED REFERENCES

Thetexttofollow includes references to various
sources that have been quoted in this paper, di-
rectly or indirectly. These references include both,
surveys of general R&D activities in the field, as
well as the research results from Purdue Univer-
sity (only those in the area of microprocessor ar-
chitecture and design for GaAs technology).

Edited Original Book:

(1) V. Milutinovi¢ (editor), Microprocessor Design for GaAs
Technology, Prentice Hall, 1988. Contributors to this book in-
clude, but are notlimited to: Naused (Mayo Foundation), Lar-
son (Hughes), Fura (Boeing), Viahos (TRW), Heemeyer
(CDC), Geideman (McDonnell Douglas), Helbig (RCA), and
Milutinovié (Purdue).

Edited Repring Selection:

(2) V. Milutinovi¢, D.Fura (editors), Tutorial on GaAs Com-
puter Design, [EEE Computer Society Press, 1988,

State-of-the-Art Survey Paper:

(3) V.Vlahos, V. Milutinovié, .GaAs Microprocessors and
Digital Systems: A Survey of R&D Efforts," IEEE Micro,
February 1988.

Journal Papers:

(4) V. Milutinovié, D.Fura, W.Helbig, .An Introduction in
the GaAs Computer Architecture for VLSI," IEEE Computer,
March 1986, pp. 30-42.

Translated into Japanese and republished by NIKKEI
ELECTRONICS, Tokyo, Japan, October 1986.

(6) V. Milutinovi¢, ,State-of-the-Art Computer Design for
GaAs Technology,” IEEE Computer, October 1986 {Guest
Editor’s introduction}, pp.10-15,

(6) V. Milutinovié, A.Silbey, K.Keirn, M.Bettinger, D.Fura,
W.Helbhig, W.Heagerty, R.Ziegert, R.Schellack, W.Curtice,
«System lIssues in VLS8! Computer Architectures for GaAs,"
IEEE Computer, October 1986, pp. 45-57.

(7) V. Milutinovi¢, D.Fura, W.Helbig, J.Linn, ,Architec-
ture/Compiler Synergism in VLSI Computer Systems for
GaAs," [EEE Computer, May 1987, pp. 72-93-

(8) K.McNeley, V.Milutinovié .Emulation of a CISC with a
RISC," [EEE Micro, February 1987, pp. 60-72.

(9) V. Milutinovi¢, N.Lopez-Benitez, K.Hwang, .A Vertical
Migration Microprocessor Architecture for GaAs Implementa-
tion and Real-Time Applications," |[EEE Transactions on Com-
puters, June 1987, pp. 714-727.

(10) V. Milutinovi¢, ,Simulation Study of Vertical-Migra-
tion Microprocessor Architecture,” IEEE Transactions on
Software Engineering, December 1987, pp. 1265-1277.

(11) V. Milutinovié, A Simulation Study of GaAs-Oriented
Suboptimal Detection Procedures," IEEE Transactions on
Communications, May 1988.

(12) V. Milutinovi¢, M.Bettinger, W.Helbig, .Multi-
plier/Shifter Design Trade-offs in a 32-bit Microprocessor,"
IEEE Transactions on Computers, October 1988.

(13) W.Helbig, V. Milutinovié, ,The RCA's DCFLE/D-MES-
FET GaAs 32-bit Experimental RISC Machine," IEEE Transac-
tions on Computers, December 1988,

Conference Papers:

(14) J. Fortes, V.Milutinovi¢, R.Dick, W.Helbig, W.Moyers,
A High-Level GaAs Systolic Array,” Proceedings of the
ACM/IEEE International Workshop on High-L.evel Computer
Architecture, Honolulu, Hi, January 1986.

(15) B. Preuniéié, S.Lakhani, V.Milutinovié, .Modelling
and Analysis of Stochastic Propagation Delays in GaAs Ad-
ders," Proceedings of the ACM/IEEE Hawaii Internationat
Conference on System Sciences, Kona, Hl, January 1988,

(18) V.Milutinovi¢, M.Bettinger, W.Helbig, .,Adder Design
Analysis for GaAs Technology," IEEE Tutorial on GaAs Com-
puter Design, Washington, D.C., January 1988.

Other References:

(17) Dietz, H., Chi, C.-H., .A Compiler-Writer's View of
GaAs Computer System Design,” Proceedings of the HICSS-
21, Kona, Hawaii, January 1988, pp. 256-265.

(18) Radin, G., .The 801 Minicomputer,” IBM Journal of
Research and Development, Vol. 27, No. 3, May 1983, pp.
237-246.

(19) Paterson, D.A., .Reduced Instruction Set Computers,
Communications of the ACM, Vol 28, No. 1, January 1985,
pp. 8-21.

(20) Hennessy, J., VLS| Processor Architecture, |[EEE
Transactions on Computers, Vol. 34, No. 12, December 1985,
pp. 66-77-

Internal Report:

(21) Milutinovié, V., ,The 1988 Sponsored Research
Progress Report," Purdue University Internal Report, 1988.

Veljko Milutinovic
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907
USA

