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Abstract : In this paper, we present a new approach for capacitance matrix calculation of lossy multilayer VLS interconnects based on quasi-static
analysis and Fourier projection technigue. The formulation is independent from the position of the interconnect conductors and number of layers in the
structure, and is especially adequate to model 2-D and 3-D layered structures with planar boundaries. Thanks to the quasi-static algorithms considered for
the capacitance analysis and the expansions in terms of convergent Fourier series the tool is reliable and very efficient; results can be obtained with
relatively little programming effort. The validity of the technique is verified by comparing its results with on-surface MEI method, moment method for total
charges in the structure, and CAD-oriented equivalent-circuit methodology, respectively.

Semi-analiticni pristop izraCuna kapacitivhostne matrike
vecslojnih povezav v VLSI vezjih primeren za ra¢unalniSko
podprto nacrtovanje

Kljuéne besede: polprevodniki, elektronika, mikroelektronika, IC vezja integrirana, povezave vmesne izgubne, VLS| vezja integracije zelo visoke stopnje
vedplastna, matrike kapacitivne, vodniki povezav medsebojnih, Fourier metoda projekcije, kapacitivnost medsebojna, Mei metoda, Green funkeije, CAD

snovanje racunalnisko podprto

lzvledek : V prispevku predstavijamo nov pristop k izradunu kapacitivnostne matrike izgubnih vecslojnih povezav v VLSI vezjih. Le-ta sloni na kvazi-stati¢ni
analizi in Fourier metodi projekcije. Oblika je neodvisna od $tevila in poloZaja prevodnih povezav v sloju in je posebno primerna za modeliranje 2-D in 3-D
struktur s planarnimi mejami. Vsled uporabe kvazi-stati¢nih algoritmov za analizo kapacitivnosti in razvoja v konvergentne Fourier vrste, je omenjeno orodje
zanesljivo in izredno udinkovito; rezultate lahko dobimo z relativno malo truda pri programiranju. Veljavnost tehnike smo preverili s primerjavo rezuitatov
dobljenih z dvema drugima pristopoma.

1.  Introduction and conductivity 6, where | = 1,...,L. For lossy medium

the complex permittivity is gl =gl -jo/w. The point charge
Calculation of the capacitance matrix in multilayer [C inter- source is located along y = 0, X = xs and z = Zzs,
connects is a well-known problem that can be solved by respectively(see Fig. 1).

many analytical and numerical techniques /1-9/. Often
these procedures were based on the integral equation for-
mulation, differential equation formulation, or have been
the results of extensive numerical simulations using ade-
quate empirical corrections.

Dirac point charge & L

This letter proposes a new and more general formulation r, p
. . . H L

for computation of capacitance matrix of the most com- <

mon 2-D interconnect structures using quasi-static analy- Fie@w & i

sis and Fourier projection approach.

re

2. Background of the method & 1 d,

X

In the formulation, 2-D L-layered interconnect structures
with planar boundaries are considered. Each layer is line- Fig. 1. Geometry of a layered structure for multilayer
ar, homogeneous, and isotropic, and has permittivity ” Green'’s function determination.
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Inside each layer | and excluding the source point layer,
the potential function @" satisfies

Vip" =0 (1)
and the induction vector DV is obtained from

DY =-Pve®. (2)

Here, the problem is solved by developing each potential
o" as a Fourier series. In the source layer, the general
solution to (1) can be written as

(/)(S)(Xf,yf,Zf)=Q?p(xf,yf,zf)+¢H(xf,yf,2f) (3)

where @p is the source term given by

Q 1

(s ) 12
4" [(xf —x) +y) +(z; —zﬂ

P ypo2p) =

(4)

and

Py (xf Yo Zf) = Z [C)(z:n) eXp(K”me) +

n,m=0

D(S) CXP(_Kngf )Jcos(knxf>cos(k"1 yf)

nm

(5)

where kn = n1/a, km = mi/b, Kam = (kn? + km2)2, (x,V1,21)
are field point coordinates, and a and b are dimensions of
the structures in x and y direction.

Considering (2), D¥ is given by

D (x;, 2,0 =Dy (5, 5,,2,) Dy (X, 4,2, )(6)

with
D.(x y.2.)= 0 (xf —x‘\,)lr‘_-l—yfl_\,—k(zf -z, )1
AU ENAERT ] - N B2
47| foe, —x)? +32 +(z, =2,
(7)
and

DH (xf Vs Zf> = é(s){ an [Cz(z:n) exp(K”me) +

n,m=0

Dw(nxn) eXp(mK'anf )]Sin(knxf)cos(kmyf >}1X

+ §(AY) { Z km [CI(I;l) eXp(Knm Zf ) +

n,m20

D:(z:n) eXp(—Kanf )}COS(anf ) Sin(kmyf )}lv

_g® { K, [C,(,fn) exp(K,, ;) ~

n,m=0

G

D)(nxn) eXp(_Kanf )]Cos(knxf)cos(kmyf )}1 .

In the other layers, the solutions are

(0([) (xf ’ yf > Zf ) = Z lCJ(u[zz exp(Kngf ) +

n,m=0

Dz(zf;f exp(—Kunsz )JCOS(kn xf)COS(km yj)

(9)

and

D(l) (xf ’ yf ? Zf) = §<1){ an [C:(zf: eXp(1<nmzf ) +

n,m=0

Dr(n[t? exp(_Kanf )]Sin<kn xf)cos(kmyf )}1(

+ §(1) { Z km [C,(u[:? exp(Knm Zf ) +

n,mz0

Dl(u[rz eXp(_K/mt Zf )]COS(k” xf ) Sin(km yf )}l_y

- §(I>{ Z Knm [Cz(nl)z eXp(Kanf ) -

n.mz0

D:(ul;? exp(~K1un Zf )]Cos(k/x xf ) Cos(km yf )}1:( 10)

The potential function distribution ¢" and the normal com-

ponent of electric induction vector D" are expressed by
series expansions in terms of solutions of the Laplace equa-
tion (1). One such expansion is written down for each ho-
mogeneous region of the layered structure in Fig. 1. The
expansion coefficients Com” and Dum” of the different se-
ries are related to each other and to the charge density
distribution on the interconnect conductors via boundary
conditions. Then, coefficients Com and Dan are deter-
mined recursively. In this way we have found the multilayer
Green’s function G(ry; rs) of the probelm. By deriving the
Green’s function over a multilayer dielectric region and al-
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lowing evaluation of potential distribution in any layer, we
can place interconnect conductors anywhere in the multi-
layer structure, and therefore solve for the capacitance per
unit length matrix for an arbitrary number of conductors.

3. Capacitance matrix calculation

In the following the complex capacitance calculation pro-
cedure will be treated in more detall. In an equivalent cir-
cuit, the value of a capacitance is the ratio of the free charge
associated with a voltage difference between two intercon-
nect conductors or between an interconnect conductor
and the reference (e.g. the ground plane or the point at
infinity), and that voltage difference. The values of these
capacitances are known as network capacitances.

According to the equivalent source principle for the elec-
tromagnetic field, we can replace the rectangular conduc-
tor (c)(see Fig. 2a) with a piece of surface charge density
distribution o¢(rs) around the surface S¢, as shown in Fig.

2b. Using a Green'’s function of the medium G(r,:x,) that

incorporates all boundary conditions in the structure in Fig.

2b (see Sect. 2), the voltage at any point I, is generated
by the charge density o(rs) on all conductors (c = 1,...,N)

N
vie) =Y f 0.6,
c=1

Element Coj of the capacitance matrix [C] may be calculat-
ed as the charge Qc per unit length on conductor (c) when
the voltage on conductor (j) is 1 and O V on all other con-
ductors. The charge per unit length on conductor (c) is the
integral of the surface charge density oclrs) over the cir-

cumference of conductor (¢): Q¢ = ﬁwac (r,)dS, . The

charge distribution on every conductor (¢) may be approx-
imated by a number Np of well-chosen basis functions
Oc.r=1.... Nblrs) along the contour of the conductor:

.....
N,

o.(r)= ZWC.r 0., (r,). The problem has been reduced
r=t

N2

g 1 Lld,

e, L i
\b) S “”?A/O'(rc) Si 1
87, 0 —owoly) g,
. / S : k
Z i ).J
g 1 d,
X a
b)

Fig. 2. Geometry of a layered structure with (a)
embedded conductors, and (b) charge density
distribution on the discretized surface of the
conductors.

to the computation of the discrete charge constants
{Woe=1..N, r=1...Nb}. As the result we obtain a series of simul-
taneous equations and represent them as follows:

N N,
ZIZWL:rp,‘}C,r[, = ijl..‘N (12)

r=1

where Vi=1_n is the voltage on any conductor (j), with

b ij)ic) o, (t)G(r,;x,)0,, (xr,)dS,dS,
et
§ 0.)ds,

(13)

as potential coefficients of the Galerkin matrix. Solving the
matrix equation (12) on a computer, we can determine the
constants {W. 1} and then the capacitance per unit length
C¢j can be obtained in the form:

N,

C,=0.(V, =LV, =0)=3W, i 0. (L)dS, (14)
r=l

The lossy semiconducting substrate is taken into account
by the complex permittivity

O
W
where & is the permittivity and ¢ conductivity of the semi-
conducting substrate (silicon).

Due to the quasi-TEM character of the electromagnetic
fields in the examined structure the frequency dependent
distributed admittance per unit length Y can be calculated
as
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. .0
Y =G+ joC = jo-= (16)
AV
where Q is the total charge per unit length, AV denote the
voltage difference between the conductors, G is the con-
ductance per unit length (losses) and C is the capacitance
per unit length.

4. Discussion of the resulis

in this section we apply the new procedure to calculate
some examples. In these examples we use muttilayer IC
interconnects whose strip conductors are infinitely thin
(zero-thickness) or of rectangular cross-section and very
thick (as usually in on-chip interconnets).

Example 1

Let us consider the system of four strip conductors em-
bedded in a two-layered dielectric region with structure as
shown in Fig. 3, where the conductors are numbered from
left to right and upper to lower as 1, 2, 3 and 4, respective-
ly. Numerical values for the capacitance matrix elements,
generated by the proposed approach (has been used the
moment method) and by a on-surface ME! procedure /1/
and moment method with total charge in structure /5,8/,
respectively, are given in Table |. Note that the discrepan-
cies between the values generated by our approach and
one by /5,8/ are practically smaller than 0.2% over a wide
range of physical dimensions and material parameters (all
treated cases are not reported in this letter).

V/- Magnetic wall

LN £, l= 2
(~—Vy~>
p— H1
w
prrannsnsindpy
] H3
{'Electric wall IHz g 1= 1

Fig. 3. Geometry of the structure from example with
four strips (W/H1=S/H1=H2/H1=1/3, H3/
H1=2/3, er1=5and €,2= 1)

Capacitance MoM [5,7] MEI[1] This letter
(pF/m)

Cy 70.158 69.514 70.158
Cy -12.842 -12.832 -12.839
Ci -12.960 -13.110 -12.967
Cu -22.240 -23.014 -22.230
Co 87.327 87.028 87.227

Coa ~-64.195 -55.462 -54.234
Cos -4.052 -3.988 -4.049
Cas 133.935 128.86 128.50
Cas -14.16 -14.93 -14.21

Cua 135.70 141.31 135.94

Table I. Capacitance matrix of the structure of Fig. 3.

4

Example 2

In order to prove the validity of the given approach self and
mutual per unit length shunt admittance (capacitance and
conductance per unit length) calculated using our proce-
dure are compared with the results of the full-wave analy-
sis {spectral domain approach) in conjunction with equiva-
lent circuit modeling technique /9/. In Fig. 4, an asym-
metric coupled interconnect structure is depicted with the
following electrical and geometrical parameters:

- g =500um,tx=2um,wi=4um,wo=1um,Ty=
To =1 um, €= 11.8, psi = 0.01 Qcm, €ox = 3.9 and
s =4 um.

Sio, to

Silicon

——————+

Fig. 4. Asymmetric coupled interconnects on lossy
silicon substrate.

Fig. 5a shows the variation in the distributed self and mu-
tual capacitance per unit length C11(w), Ca2(®), and C12(w),
as a function of the frequency. Similarly, Fig. 5b shows the
variation of the distributed self and mutual conductance
per unit length G11{®), G12(w), and Ga2(w) as a function of
frequency. The solid lines are computed using the new
multilayer Green’s function procedure and the dashed lines
are the results from the equivalent-circuit model approach
/9/. It is observed that the values of the self and mutual

) ) :
~~~~~~~~~~ Our model
- Circuit model [9]
15 Ci1
u\d i Cc22
8
o
s
'g 0.5
Q.
3]
O ct2
0
T
-05 : ‘ ; :

Frequency (GHz)

Fig. 5a Self and mutual capacitance per unitlength
of asymmetric coupled interconnects on
lossy silicon substrate.
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Fig. 5b Self and mutual conductance per unit length
of asymmetric coupled interconnects on lossy
silicon substrate.

capacitance and conductance per unit length, respective-
ly, are in good agreement with those of /9/. As expected,
the lossy silicon semiconducting substrate has significant
impact on the frequency-dependence of the capacitance
and conductance per unit length as compared to the loss-
less or low loss dielectric substrate.

5. Conclusion

In this paper, we have discussed a technique for capaci-
tance matrix extraction over a multilayer Si substrate. We
derived the appropriate Green’s function using guasi-stat-
ic analysis and Fourier projection method. The potential
function and electric induction vector components are
defined as a series expansions in terms of the Laplace
equation which are periodic in the direction parallel to the
plane of interconnect conductors. The proposed semi-
analytical procedure allows us: first, to assess in an analyt-
ical and simple way the integral equations of the problem,
and second, to obtain a fast convergence of the numerical
results due to the averaging technique used in the Galer-
kin approach which leads to better accuracy in the numer-

ical calculations. This method results in a very simple for-
mulation of the problem that is well suited for computer
solutions with relatively little programming effort.
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