UDKB21.3:(563+54+621+66), ISSN0352-9045 Informacije MIDEM 36(20086)3, Ljubliana

A FRAMEWORK FOR HIGH-LEVEL SYSTEM DESIGN
EXPLORATION

Joze Dedi¢, Matjaz Finc, Andrej Trost

University of Ljubljana, Faculty of Electrical Engineering, Laboratory for Integrated
Circuits Design, Ljubljana, Slovenia

Key words: abstraction, design-space exploration, modeling, high-level design, TLM.

Abstract: The complexity of modern embedded systems requires a revised and systematic approach to efficient and concurrent management of hard-
ware (HW) and software (SW) parts in a codesign process. In order to optimally meet the ever increasing design requirements and at the same time
leverage design productivity, higher-level aspects need to be addressed before worrying about the HW/SW boundary. This way high-level design deci-
sions evaluation is enabled and premature ad-hoc decisions are avoided. This paper deals with high-level aspects of system-level modeling and provides
modeling extension, from which contemporary related methodologies could greatly benefit. High-level aspects, their influence on the entire design flow
and systematic integration into the codesign environment are presented. A design flow and realization of supporting library are detailed, both offering
support for high-level exploration. Applicability of the proposed high-level codesign concepts is ilfustrated with a case study.

Programsko ogrodje za visokonivojsko raziskovanje na
sistemskem nivoju

Kjuéne besede: abstrakcija, modeliranje, raziskovanje nacrtovalskega prostora, TLM, visokonivojsko nacrtovanje.

l1zvieéek: Visoka kompleksnost modernih vgrajenih sistemov zahteva posodobljen in sistematiCen nacin pristopa k so¢asnemu nacértovanju strojne in
programske opreme (SNSPO). Nenehno povecevanje nacrtovalskih zahtev je ob hkratni zahtevi po poveéevanju nacrtovalske produktivnosti mogoce
samo v primeru, da se pred obravnavo meje med strojno in programsko opremo osredoto¢imo na visokonivojske lastnosti sistema. To nudi osnovo za
ovrednotenje visokonivojskih sistemskih odlocitev, na podlagi katerih se je mogoce izogniti prezgodnjim in neutemeljienim nacrtovalskim odloc¢itvam. V
Slanku bomo predstavili visokonivojske pristope modeliranja na sistemskem nivoju in predlagali razsirjen pristop uporabe abstrakcije. Uporaba prediaganih
mehanizmov je sodobnim metodologijam, ki se ukvarjajo s sorodnim raziskovanjem, lahko v veliko pomo¢. Predstavijeni so visokonivojski pristopi, njihov
vpliv na celoten nacrtovalski potek in sistemati¢na integracija v okolje s podporo za SNSPO. Podrobno sta prikazana nacrtovalski potek razsirienega
koncepta abstrakcije in izvedba podpornih knjiznic, ki omogocata visokonivojsko raziskovanje. Uporaba prediaganega visokonivojskega pristopa je prika-
zana na prakti¢nem primeru.

proaches /6/-/9/. The concept of abstraction is used to
effectively handle complexity at different levels of system
realization, starting at system specification and ending at

1 Introduction

The design complexity of the state-of-the-art systems steep-

ly increases due to the rapidly increasing scale of integra-
tion and tightening performance demands. The major driv-
ing force behind research activities that are addressing
system design is to decrease the constantly growing gap
between designer productivity and increase in complexity
from the underlying technology, described for example with
the Moore’s Law. Addressing this gap, the majority of re-
search studies concentrate their work on various abstrac-
tion levels of HW/SW codesign /1/-/5/ and they seam-
lessly deal with different aspects tightly integrated. Although
the designer using this approach must be fully aware of
different abstraction levels (from purely abstract to imple-
mentable) and different aspects (architecture and function-
ality description, design space exploration, etc.), it is the
role of the methodology to define the entire design flow,
define all the intermediate steps of it and provide effective
means for automating this extremely complex process. As
aresult, research efforts in HW/SW codesign are focused
on seamless integration of efficient methods that the sys-
tem designer would benefit from.

In this paper we will especially focus on raising the level of
abstraction, which is one of the generally recognized ap-

its implementation. Providing adequate evaluation support
at system-level specification, premature system-level de-
cisions can be avoided and the design effort can be di-
rected towards detailed exploration of potentially feasible
solutions. To enable this, support for abstraction must be
leveraged and design stages must be approached system-
atically, while consistently following system-level optimiza-
tion efforts.

Unambiguously defined abstraction levels and clearly de-
fined transitions among them directly contribute to auto-
mation of lowering the level of abstraction /8/, /11/. Low-
ering the level of abstraction is based on making design
decisions about the system and if the decisions to be tak-
en are within manageable complexity and of a rigidly de-
fined abstraction level, they could be automated. =.g. low-
ering the level of abstraction from C to the assembler and
later to an executable binary code is supported automati-
cally. Automation is enabled by the use of a compiler and
design decisions are made by the use of switches. Yet
another important reason for heightening the level of ab-
straction is narrowing the gap between the initial informal
description of the system and formal system description

1561

Informacije MIDEM 36(2006)3, str. 151-160

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

which could possibly be executed and evaluated. Current-
ly there exists a huge gap in this area and system-level
approaches that for example use UML /12/ try to cover it.

Based on the above, we propose a system-level design
methodology that systematically extends the currently used
levels of abstraction. For the methodology a framework
implementation is explained. Section 2 classifies the types
of abstraction and based on that introduces the contem-
porary related work. In Section 3 we will focus on transac-
tion level modeling, which is a widely used modeling ap-
proach supporting refinements throughout different levels
of abstraction. An explanation of the framework support-
ing extended concept of abstraction will follow in Section
4. Applicability of the extended abstraction level modeling
will be demonstrated in Section 5 by means of a case study
of a JPEG encoder. With conclusions and plans for future
work we will end this paper.

2 Related work

Numerous research studies dealing with different aspects
of the design methodology have been published /1/-/4/.
While the heterogeneity issue of HW/SW codesign is still
being under the examination, the research interest is slowly
drifting away from the concern about HW/SW boundaries
towards higher levels of abstraction. This contributes to
leveraging the design productivity and enables more effi-
cient design space exploration.

The today’s widely used system-design approach dealing
with an abstraction is transaction level modeling (TLM) pre-
sented by Gajskietal. in /7/. TLM abstraction is based on
an approach where the design description is started by
describing only the most important system-level features
(specification model). Features unimportant or yet unknown
for the current model of the system are simply left out (un-
described). Throughout successive refinement steps (from
specification to implementation model) as the designer's
knowledge of the system progresses, being the result of
the model evaluation feedback, additional features are
added to further detail the description of the system. This
also corresponds to lowering the level of abstraction. The
process of successive model refinement is finished once
the model of the system is described at the abstraction
level low enough for system implementation by means of
automation tools. At every level of abstraction an evaluata-
ble model (EM) is obtained. The model at the lowest level
of abstraction encapsulates all the information the design-
er captures throughout model refinement and consists of
all the necessary implementation details. Being an imple-
mentation model (IM), it provides grounds for system im-
plementation.

Besides TLM, other types of abstraction can be identified.
Jerraya et al. ground their work on the approach introduc-
ing layers of intermediate adapters /4/, /10/, /14/. The
SPACE methodology applies the concept of layers of serv-
ices to implement the support for the OS-like-features within

152

SystemC /3/. This type of abstraction is based on the
concept of layers of services. Interfaces provide mecha-
nisms for connecting neighboring layers and offer efficient
means of access to functionality while hiding realizations
implemented within particular layers. For example, SW
engineers apply programming techniques using this type
of abstraction to successfully cope with complexity. Un-
like the aforementioned type of abstraction, here to obtain
EM and IM, all layers of abstraction must be fully imple-
mented, as they depend on each other.

The third type of abstraction is based on the concept of
platforms, presenting layers of abstraction. At each layer
the designer’s task is to best map the requirements with
abstraction of potential implementations. Choosing a po-
tential implementation at the current level of abstraction
introduces specification of requirements for the succeed-
ing lower level of abstraction. Similarly to the first mentioned
type of abstraction, here the description of the system also
starts with system-level features, but differentiates in that
here individual layers of abstraction are not refined, but
rather supplement each other with different levels of im-
plementation details. Compared with abstraction based on
the concept of layers of services, this type of abstraction
provides EMs at all abstraction levels and does not have
so rigidly defined layer's stacking. An example of the de-
sign methodology applying this concept of abstraction is
Metropolis /1/, /16/ based on recursive paradigm of plat-
form-based design /9/, /15/.

Observation of arrangements of abstraction-based ap-
proaches led us to the conclusion that these approaches
belong to a set of vertical concepts for addressing com-
plexity. They should however be thought of distinctively from
a set of horizontal concepts, i.e. component-based ap-
proach /10/ and functionality-architecture separation.
Horizontal concepts can coexist on all layers of abstrac-
tion. For example, the component-based approach is in-
cluded as its integral part within TLM. Inspection of meth-
odologies reveals that all the above mentioned concepts
can be freely combined to leverage the design productivi-
ty. For example, Metropolis uses platform-based design
(vertical concept), component-based design and applica-
tion-architecture separation (horizontal concepts). They
model heterogeneous systems at higher levels of abstrac-
tion by using the Metropolis metamodel specification where
system functionality is presented by a set of objects that
concurrently perform actions while communicating with
each other. Jerrayaetal. /2/, /4/, /17/ combine in /14/
the first two types of abstraction with the component-based
design. An example of methodology implementation onto
a SystemC simulation backbone with the support for OS
scheduling is also given in /14/. SPACE methodology /3/
combines first two types of abstractions and component-
based design.

C-extension languages, which deal with system-leve! mod-
eling and HW/SW codesign, like SystemC /6/, /18/ or
SpecC /19/, have support for TLM built in. Built around

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

Informacije MIDEM 36(2006)3, str. 151-160

the SpecC system-level design language /20/, Gajski et
al. /7/, /13/ developed an SoC exploration methodolo-
gy, which covers the entire path necessary for system de-
velopment. Methodologies that base some of their work
onthese language extensions also favor variations of TLM,
primarily computation-communication separation. The AAA
/21/-/23/ methodology relies on the graph theory and
focuses on automatic mapping of application to architec-
ture. For manageability they use hierarchy, but to our knowl-
edge, this methodology is weak in abstraction.

In order to enable early system-level exploration (where
lower-level details are not captured yet) only the first and
the third type of abstraction can be used. The second type
does not support this because it requires all layers to be
available if model evaluation is to be done. Taking into ac-
count popularity of TLM based abstraction approach
{throughout the usage of SystemC or SpecC) we concen-
trated our research work on TLM based abstraction. Nev-
ertheless, we believe the approach we propose can be
successfully combined with other two types of abstraction.

3 Levels of abstraction within TLM
exploration

The starting point in TLM is a functionally complete SW
description of the algorithm that needs to be implemented
in the system. This forms an un-timed model, called the
specification model (presented with circled A in Fig. 1),
usually described with a programming language (e.g. C).
At this abstraction level, the model yields confirmation of
functional correctness of the algorithm description. The
functional correctness is later refined to include architec-
tural timing details and component communication is spec-
ified in the way that is architecturally implementable. In the
final step, a fully functional and fully timed RTL model of
the system is obtained (circled F). A detailed explanation
of TLM can be found in /6/ or /7/.

The purpose of following the steps of successive refinements
is guiding the designer from the starting specification model
(also called the system architecture model (SAM) /6/)
through the well defined intermediate steps (i.e. levels of
abstraction) to the final implementation model (referred to
also as the RTL model). By making design decisions and
detailing the system description, the designer is able to re-
place more abstract models with less abstract down to the
point where the system description can be used for the sys-
tem realization by the use of automation tools.

To study the concept of successive refinements support-
ed within TLM, we focused on aspects this approach fea-
tures. In Fig. 1 it can be observed that the TLM approach
favors the description approach where the designer can
independently focus on the computation and communi-
cation part of system modeling.

For the purpose of a clearer separation onto problem do-
mains we examined the TLM from the perspective of the

Rugby metamodel (RM) /8/, /11/. It has been developed
especially for the study of modeling and handles abstrac-
tion in essentially more fundamental way. The RM intro-
duces four domains; computation, communication, data
and time. Terms computation and communication from
the TLM model should not be regarded equal to terms hav-
ing the same name in the RM. As it will be explained later,
these TLM terms are a superset of terms in the RM.

A\, Specilication modst

A /'B"-‘ Component-assemuly
N modet

-(C‘) Bus-arbifration modet

Communication

Cycle-

g /D\ Bus-functional madel
timed

l,f'“*., Cydie-accurate
N computation miodet

/Fj Implementation model

Approximate-
tmed

U e
fimed \é \B/ R
Un- Approximate- Cyclo-
tmed timed timed

>
-

Computation

Fig. 1. The basic concept behind the TL.M approach
is successive refinement of system description

Table 1. Abstraction level exploration in the TLM model

abstraction exploration of...

TLM aspect computation communication data time
domain domain domain domain

computation partial X partial full

communication X full partial full

3.1 TLM computation domain

We argue that methodologies offering a formal support from
the TLM's specification model onward offer full utilization
of abstraction in the time domain (RM) only. The TLM start-
ing system description contains no information about com-
putation durations, which implies a fully abstract time do-
main (RM). Throughout the TLM refinement steps, timings
get gradually defined to a completely time-accurate mod-
el, thus lowering the level of abstraction.

On the contrary, we find the data (RM) and the computa-
tion (RM) abstraction of quite a low-abstraction level, as
the starting model (TLLM) is functionally complete and cor-
rect. The possible abstraction levels are therefore in these
two domains not fully explored. Data to be processed and
their processing algorithm (i.e. computation) are in TLM
starting point already in their final form. Input test vectors
for functional verification can be fully applied and all fur-
ther refinements deal with timing and communication is-
sues instead. If computation is to be remapped to the HW
domain, this becomes the issue of transformation between

163

Informacije MIDEM 36(2006)3, str. 151-160

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

the same levels of abstraction, but across the heterogene-
ity boundary.

Computation row of Table 1 summarizes the above.

3.2 TLM communication domain

Here the communication (RM) and time (RM) domains are
fully explored throughout the available levels of abstrac-
tion. If we take a closer look at the TLM’s specification
model communicatiort principles, we can see that com-
munication is simply implemented with a mechanism of a
shared variable, additionally extended with events /6/, /7/.
This kind of communication is obviously of a high abstrac-
tion level. Throughout the successive refinements, shared
variables are gradually replaced with channels down to the
point where every data and every handshake bit level sig-
nal of the wire on the communication bus are known. Si-
multaneously care is also taken for lowering the level of
abstraction in the time domain (RM). When communica-
tion is abstracted with shared variables, communication
takes no time, but throughout the successive refinements
an accurate RTL implementation model is gradually ob-
tained.

dasigner's ingut

Fig. 2. The design flow

Minding the fact that the TLM system model communicates
data produced in the computation part of the model, the
abstraction level exploration of both data (RM) domains
are equal (i.e. only partial).

The bottom row of Table 1 summarizes the above.

3.3 Downsides of the TLM approach

In the initial step of the TLM, a model has to be captured in
the functionally complete manner in order to allow for the
evaluation of high-level design decisions and profiling it for
further refinements and design decisions. It is already an
established practice to describe the mode! functionality in
a programming language (e.g. C or C++). The major draw-
back of this approach is the starting point tor the descrip-
tion of the algorithm which is, seen from the system per-
spective, insufficiently abstract. This puts a burden on sys-

154

tem-level design alternatives exploration, because a low-
level description needs to be included in the model of the
system in order to obtain evaluation feedback. In the code-
sign process, binding ad-hoc decisions at early stages
should be avoided as they unjustifiably narrow the availa-
ble design space and eliminate potentially better design
solutions.

Furthermore, the TLM SAM execution model is SW orient-
ed and thus inherently sequential and memory based, while
HW is fundamentally concurrent. Sequential algorithms that
are proved as effective in SW are seldom the best choice
in HW. As it has already been pointed out in literature (e.qg.
/25/), algorithms targeting HW mostly significantly differ
from algorithms targeting SW due to the exploitation of dif-
ferent types of implementation resources. Making further
design decisions based on profiling of the SW description
(e.g. /13/, /26/) can not provide substantial information
for optimal HW/SW codesign.

Even if the issue of inherently suboptimal solution is left
aside, raising the level of abstraction addresses the large
conceptual gap between the high-level system description
and the programming language functional description. We
propose a modeling solution at higher levels of abstraction
that resembles formal methods of description of UML class
diagrams /12/, which is further leveraged with a domain-
specific semantics and syntax, promoting it to the form of
a formal system specification. A formal high-level specifi-
cation benefits from an executable specification through-
out all layers of abstraction - not only functionally com-
plete.

4 The design flow supporting higher
levels of abstraction

The approach we propose enables a systematically and
intuitively developed model of the system beginning with a
description at higher levels of abstraction. This narrows
the gap between the informal system specification and the
initial formal model description. We provide techniques that
enable creation of an executable and evaluatable model
of high-level system description starting with pure abstract
computation operations, operating on abstract data trans-
mitted through abstract communication channels and tak-
ing no or evaluated amount of time. Sequences of trans-
formations between abstraction levels feature smaller gaps,
thereby extending a solid ground for future research in the
field of automatic transition between successive stages.
Important high-level design decisions are in this way frag-
mented into several smaller decisions, offering improved
system level design guidance.

Following our methodology (Fig. 2), designing a system
starts by capturing the system-level specifications about
the system to be developed. The designer first identifies
the system-level functionality, high-level proposition of an
architecture and system restrictions and demands {con-
straints). Wrappers provide support for capturing function-

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

Informacije MIDEM 38(2006)3, str. 151-160

ality, constraints and architecture. From that an executa-
ble specification can be built at all levels of abstraction
serving as a basis for analysis of the model. Even at a high
abstraction level an executable model of the system is built.
Its purpose is evaluation of system level aspects. Through-~
out lowering the level of abstraction the feedback informa-
tion about design decisions is becoming more detailed.

After comparing evaluation feedback results with con-
straints, the designer gets confirmation if the system de-
scription is viable or not. If the evaluation results do not
meet the specified constraints, changes need to be made
in the system description until requirements are met. The
process of finding a viable solution at the specific abstrac-
tion level is called design-space exploration, shown by an
inner loop arrow in Fig. 2. Once the designer’s input is
found viable (i.e. system constraints are met), the design
space is narrowed and the model description needs to be
further detailed. Detailing is done by means of model re-
finement (outer loop arrow in Fig. 2) by means of abstrac-
tion principles given in previous text. The process of mod-
el refinement has to be done until the level of abstraction
is low enough (i.e. the IM is reached), where automated
tools can take over.

4.1 Wrappers

In order to enable transparent, concise and domain-sepa-
rated capturing of the specification about a system to be
developed, we provide a library of wrappers that promotes
application of vertical and horizontal complexity-address-
ing concepts presented in Section 2. As a vertical com-
plexity-addressing concept we provide techniques that al-
low capturing and evaluating the system-level information
above the levels of abstraction fundamentally supported in
TLM. Horizontal complexity-addressing concepts that our
methodology supports are functionality-architecture and
computation-communication separation. By applying do-
main separation, the designer can independently focus on
each problem domain.

Besides domains separation and capturing and evaluation
of the system information, the role of wrappers is also pro-
viding basis for fast and easy construction of executable
and evaluatable model. Our methodology provides sup-
port for firmly based design decisions grounded on the
model evaluation feedback results, as for example execu-
tion time, resource activity, idle time and utilization share.
To relieve the designer of the burden of repeatedly imple-
menting support for these commonly required aspects, we
implemented support for logging relevant information as
an integral part of wrappers. During model execution, wrap-
per's logging functionality is responsible for automatic col-
lecting of information by means of simulation traces that
can be later reviewed and from them important design
decisions can be drawn.

System functionality is intuitively described as a network
of tasks that communicate through ports, thus providing
grounds for computation-communication separation. For

the simulation and evaluation purposes we provide a mod-
eling scheme where all instantiated functionality wrappers
(representing tasks) are capable of operating in parallel.
From the functionality point of view, the task execution is
limited only by their data dependency. The maximum level
of parallel operations that specific algorithm permits is first
examined and this is later decreased by applying restric-
tions of execution units. Each task is assigned an execu-
tion unit responsible for characterizing the cost of execut-
ing services (e.g. time, energy, and size by means of logi-
cal block or transistor count) and providing limitations on
executions (e.g. resource un/availability). When more than
one task specifies the same execution unit, it is up to the
execution unit scheduling policy to determine the outcome
of such a request. This provides the basis for automatic
mapping and scheduling algorithms in the way the design
requirements are met.

4.2 Backbone for simulation and
evaluation

To provide support for describing and evaluating an exe-
cutable model of the system, we utilize mechanisms pro-
vided by the SystemC modeling language. We furthermore
leverage them with the proposed concept of the height-
ened level of abstraction presented in previous sections.
As shown in Fig. 3, we provide libraries of wrappers on top
of SystemC library /6/, /18/. By instantiating and extend-
ing the wrappers with algorithm-spegific features, the de-
signer can rapidly capture and evaluate the system descrip-
tion at different levels of abstraction. The description of
the system is compiled and executed and simulation trac-
es are obtained. They are used as a basis for system anal-
ysis of the applied design decisions.

\ s N
£ functionalty |
description |

/

architecture

designer ¢ g
9 i+ description i

r - Report: E
. - resource ufilization by lasks ¢
© - resource idie time

Fig. 3. Libraries utilization for evaluation

As depicted in Fig. 3, we built support for functionality wrap-
pers tightly integrated with analysis support and underly-
ing SystemC libraries. Actual implementation of computa-
tion is realized within functionality wrappers library. The role
of architecture wrappers is to enable a rapid description of
architectural resources responsible for services charac-
terization and defining constraints on services required by
the algorithm. Services offered by a given architecture are
for example characterized by means of execution time,
energy, area, etc. Complementary, constraints provide
support for issues like for example resource contention
and communication not being timeless, etc.

165

Informacije MIDEM 36(20086)3, str. 151-160

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

Support for analysis is automatically appended to every
instantiated task and collects information relevant for eval-
uating the system description. After executing a model of
the system, collected simulation traces and numerical data
are available for analysis. The information collected is based
on architecture services utilization, coupled with their con-
straints and characterization. Various system implementa-
tions can be easily built (exploring design space) and feed-
back results of their evaluations can be used for finding a
path towards a solution that best meets system constraints.
As it will be shown in the case study section, the informa-
tion relevant for further design decisions (e.g. resource
utilization or task being idle because of resource conten-
tion) is obtained automatically.

5 Case study - system-level JPEG
model exploration

To put the concepts of the proposed heightened level of
abstraction into practice, we present a system-level case
study of a JPEG encoding system. A more detailed infor-
mation about the JPEG standard can be found in /27/
and the complete C reference code in /28/. Presenting
the entire design flow from the initial idea, over various high-
level exploration aspects, down to the final implementa-
tion would be much out of the scope of this paper and
would even blur the entire idea of the system-level mode-
ling we propose. To our knowledge, the idea of the height-
ened level of abstraction as presented here has not been
presented and studied elsewhere and so we are not able
to make side by side comparison conclusions. However,
the results we obtain can be proved correct if compared
with full implementations, as for example /27/. Differenti-
ation of our proposal essentially originates from the fact
that concepts we propose help the designer at abstrac-
tion levels that are higher than the level of abstraction used
in initial capturing model of the system of the state-of-the-
art methodologies.

Fig. 4 depicts an implementation model of a JPEG encod-
ing system targeting a single processor (processor p1)
and one memory bus (busUnit b). The JPEG encoding
process consists of four consecutive stages: color-space
conversion (rgb2yuv), forward discrete cosine transform
(frwrdDCT), coefficient quantization (quantization) and
entropy coding (entrCod). Other pre and post processing
stages (e.g. down-sampling) are omitted here for clarity. It
is straightforward to model the JPEG encoding process in
this way since it reflects an intuitive flow of data processing
stages. According to the aforementioned processing stag-
es we instantiated tasks with data dependency as indicat-
ed in Fig. 4, thus forming a formal description and a frame
for further detailing. In contrast, Fig. 5 shows a slightly dif-
ferentimplementation, offering more architectural resourc-
es, with three processors (p 7, p2 and p3) all connected to
a shared memory bus (busUnit b).

156

{ simulation start

|
|
!
|
|
!

i sy i
1 services
1

frwrdDCT

_busUnit

r
1 service
il

JPEG encoding model of the system targeting
single processor

Fig. 4.

¢ services

bustnith

Fig. 5. JPEG encoding model of the system targeting
three processors

To study the possibility of speedup at the system level, the
designer needs to determine high-level properties of the
algorithm; the minimum amount of data that can be proc-
essed between successive stages is an 8x8 pixel block
and a complete color picture is composed of three color
planes. To exploit these algorithm properties, we experi-
mented with pipelining where individual color planes are

J. Dedi¢, M. Finc, A. Trost;
A Framework for High-level System Design Exploration

Informacije MIDEM 36(2008)3, str. 151-160

sequentially fed into the encoder, i.e. immediately after a
stage processes one color plane, the data is forwarded to
the next stage (firing job request). If based only on data
dependency (i.e. without consideration of architectural lim-
itations), the successive stage can start with processing
immediately after the first chunk of data is processed in
previous stages.

To allow distribution of the processing load in the case
where more than one execution unit is available for execu-
tion, a simple event splitter is used. It is based on a round-
robin scheduler, where jobs are alternatively assigned to
frwrdDCT1 (executed on p2) or frvrdDCT2 (executed on
p3). Similarly, the event joiner merges job reguests from
both tasks to execute quantization (executed on p7).

Fig. 6 lists a high-level algorithm description for the for-
ward DCT encoding stage. When studying a specific DCT
realization (e.g. /28/), it can be concluded that 11 multi-
plications and 20 additions are needed to apply the 1-D
DCT transform. These operations represent abstract func-
tions. The purpose of the triple nested for loops of Fig. 6
listing, explained from the inside out, is as follows. The 2~
D DCT transform (of an 8x8 pixel block) is obtained by
applying the 1-D DCT transform to rows first (loop 3) and
columns second (loop 2). The pixels to be transformed
must be grouped in segments of 8x8 pixels (structured
block in data domain) (loop 1).

ocks cff BrE tytes wnd
A cressing, €8 write

int blocks = ROUND_UP({ m bytes, 64)

AiE(m_bytes % 64)
cout << so_time stamp ()
<< » Input size to £rwrdDCT is not Bx8 aligned\a";

for{ int i » 0; i < blogks; i++) /j/ Llawp 1
77 pass O - hoviental, pass 1o veruioal

zor{ int pass = 0; pass < 2; pass++)} // Loosp 2

{
Fox({ int line = 0; lina < 8; line++) /7 ioop 3

m_pixecUnit->Getbata (this, (pass=~0) ?8:32, false):
FAOLEUEL, ZOARD

n_pExectnit->Malt(11) ;
n_pRxecUns t~>Add(20 };

m_pExecUnit->WrxiteData {this, (pase~=0)?78:32, false);

Fig. 6. High-level description of DCT. Although
functionally incomplete, algorithm features are
captured.

To further detail the forward DCT model, the accessing
scheme for data storage can be applied. For this purpose,
it must be defined how the pixels are stored in memory.
Our choice was to store rows of pixels of one color plane
into successive memory addresses. This implies that when
reading rows (first pass), 8 subsequently read bytes are
exactly what we need, but when reading columns (second
pass), pixels are scattered in memory, and therefore more
consumable memory accesses must be made. As the list-
ing reveals, all requests are performed through execution
unit interface (m_pExecUnit) attached to every functional-
ity wrapper (functionality-architecture separation).

The models of the other JPEG encoding stages are con-
stituted in a similar manner and won’t be further detailed
hereafter.

Fig. 7 shows a detailed explanation of a functionality wrap-
per whose responsibility is to provide common functional-
ity for instantiating user-defined tasks, i.e. in this case study
a user-defined encoding stages of Fig. 4 and Fig. 5. The
functionality wrapper is provided within our high-level sim-
ulation library and it only needs to be extended with algo-
rithm-specific features. It is responsible for accumulating
input job requests (via ExecuteThread event), executing
the user’s algorithm (function call MainThread()) and sign-
aling job completion {via ThreadDone event). Two execu-
tion modes are provided. In the first mode
(TriggerThread_in event is unspecified) all accumulated
job requests are executed sequentially without freeing the
execution unit {(architecture wrapper) between successive
runs. In the second mode, a queued job is run only when
TriggerThread_in event happens. This scheme offers a
possibility for different scheduling types. In this case study
we applied the first execution mode. The designer’s sole
responsibility is to implement the encoding stages via meth-
od implementation {(MainThread()) that is executed through
a functionality wrapper call.

1

i

ExecuteThread event TriggerThre:ngin event*

SC_METHOD({RequestCollector

m_nRequests++;

SC_THREAD(ThreadExecutor

wait();
while { requests > 0) {
MainThread(); /luser thread
Requests--; }
m_evThreadDonenotify(SC_ZERO_TIME);

ThreadDéne event
Y
Fig. 7. Functionality wrapper

UML static class diagram notation of Fig. 8 illustrates how
the model framework is applied to the JPEG encoding sys-

157

Informacije MIDEM 36(2006)3, str. 151-160

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

tem. As it can be seen, it is seamlessly connected with
system-level modeling libraries we built. The bottom part
of the diagram shows classes directly responsible for func-
tionality implementation (rgb2yuv, frwrdDCT, quantization,
entrCod) and architecture description (processor, busU-
nit). The system designer is responsible for the implemen-
tation of functionality methods. The top part of the diagram
represents the system libraries built on top of SystemC.
Decomposition into functionality and architecture can be
clearly observed. Every task (implementing functionality
as part of the algorithm) that needs to be described must
be derived from the system functionality wrapper and must
address all computational requests through the execution
unitinterface (IExecUnit). Computational requests are pro-
vided with the interface /ExecUnit and must be implement-
ed by the designer within the architectural description. For
example, processor is derived from /[ExecUnit and the
designer must specify all methods required by the inter-
face. Following this rule, tasks can be simply mapped to
their executors at the instantiation time and various map-
pings schemes can be explored. Following the same rules,
the communication unit (busUnit) is created. Analysis sup-
port, built into the system libraries, provides automatic re-
port generation. The class unitStats is responsible for
collecting information about each architectural element
(active or idle time, which task has occupied it, etc.).

NI Miognt

w
ol Grelporocd

a0ctyels st aochitaztons hactiondty

Fig. 8. Class diagram representation of the JPEG
encoder mode/

50us 100us 150us
L T T T

5.1 Results

By following the rules and concepts established by our
methodology, we built two different system specifications
generating two executable models of the system. Results,
generated automatically, exemplify the level of information
obtained on the basis of a high-level system description.
They represent a high-level design decision feedback that
our methodology provides. Analysis of these results sets a
solid basis for further design decisions. The most impor-
tant results (automatically generated by unitStats) are pre-
sented in Table 2 and Table 3, presenting one- and three-
processor variants. It should be noted that the task per-
centage of processor utilization in a single processor vari-
ant matches results stated in literature on the basis of a full
functional implementation /27/. We obtained these results
with the amount of around 100 lines of the source code
for the system description (not taking into account our
methodology system libraries built on top of the SystemC).

Table 2. Two processors

Architecture pl bus
RET[ns] 430 680 93 240

Lo exec. task exec. task
Functionality active wait active wait
rgb2yuv [% RET] 359 0 12.7 0
frwrdDCT [% RET] 46.8 23.9 61.8 0
quant [% RET] 13.5 312 18.5 0
entrCod [% RET] 3.8 9.0 7.0 0
total [ns] 430 680

Each table is split into two parts: architectural part (upper)
and functionality part (lower). The architectural part shows
the resource execution time (RET), i.e. summation of the
time the services were required from a specific resource.
Complementary, the functionality part presents tasks' ac-
tive and wait timings (in % of RET). The numbers stated in
the exec. active column represent the percentage of the
time a specific task was being actively executed on a spe-
cific resource. Similarly, the numbers stated in the task
wait column represent the time a specific task had to wait
a specific resource to become available - this is the time

200us 250us 300us
: oo | ; I

pi.active

pl.rgb2yuv.w8

pl.rgb2yuv.ac

!
bus.rg2yuvac | [L IO LD EL L L]

pliwidDCT w8 | |

p1.frwrdDCT ac]

|

bus.frwrdDCT.ac

e e A R

pi.quantization w8

f l

pl.quantization.ac

=

bus.quantization.ac

pt.entrCod.w8

L

pl.entrCod.ac

t;us.entrcod.ac

Fig. 9. JPEG encoding stage timing diagram (single processor)

1568

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

Informacije MIDEM 36(2006)3, str. 151-160

Table 3. Three processors

Architecture pl p2 p3 bus

RET[ns] 233 460 148 880 75 100 93 240

Functionality exec. taSIF exec. tasl.c exec. tasllc exec. tasl;
active wait active wait active wait active wait

rgb2yuv [% RET] 66.7) - - - - 12.7 1.4

frowrdDCT [% RET] - - 100 (6] 100 [¢] 41.2/20.6*15.5/8.5*

quant [% RET] 24.9 17.7 - - - - 18.5 0

entrCod [% RET] 8.4 0 - - - - 7.0 3.32

total [ns] 261 660

* % RET originating from p2 and p3

interval during which a task may be executed regarding 6 Conclusion and future work

data dependency, but its execution is not started because
of the unavailability of HW resources.

The second set of results is presented in Fig. 9 and Fig.
10, where the system activity is presented as a function of
time. Fig. 9 clearly shows the execution of sequential stag-
es and wait times (abbreviated as w8), consequently in-
duced by pipelined data processing. Fig. 10 reveals that
high-level descriptions with even very low complexity can
quickly become difficult to analyze manually if parallel exe-
cution has to be considered. It can be seen that bus con-
tentions arise, making the task execution time even less
predictable. For example, this unpredictability is the rea-
son why p2 RET is not two times p3 RET, despite that p2
processes two color planes and p3 just one.

In the above we presented design flow steps that enable
capturing of high-level information about the system serv-
ing as a basis for building an executable and evaluatable
model of the system. The model, once compiled and exe-
cuted, provides an important feedback for further design
decisions. After the satisfying high-level mode! of the sys-
tem is obtained, the description of the system can be fur-
ther detailed. Assured that important high-level decisions
are formally verified, confidential migration towards an ap-
propriate modeling level within TLM can be approached.
The related research work can be used to take over from
this point on.

o s i

Our paper opens with an overview of contemporary re-
search methodologies in order to present the reader the
role of abstraction these methodologies apply. The use of
abstraction is studied, because mastering transformations
through abstraction layers is to our opinion the key to lev-
eraging the design productivity. We propose an approach
that primarily focuses on the levels of abstraction that are
essentially higher than the widely used TLM. The concept
of refinements for changing the level of abstraction is ex-
plained on the basis of the RM. By doing that, we come to
the conclusion that there is still room for specifying levels
of abstraction that are higher than in other current state-of-
the-art modeling approaches.

in order to provide a framework for exploration at higher
levels of abstraction we provide a set of libraries, built on
top of the simulation kernel of SystemC, that enables rap-
id, transparent and formal capturing of high-level informa-
tion about the system. Based on that, an executable code
is obtained that simulates high-level aspects of the system
under development. We also introduce an analysis sup-
port to provide automatic collection of the feedback data
that serves as a basis for model evaluation and further de-
sign decisions. Our case study exemplifies the use of the
methodology and shows how to quickly capture and trans-
form the information at the proposed levels of abstraction
into an executable and evaluatable model.

160us
e

piactive

p2 active f 1

p3.active

p1.rgb2yuv.ac

[.

bus 1gb2yuv.ac oL b Ao il b i

Lol 4 d
[

bus rgb2yuv.w8

P2 IWdDCT1.w8

p2.frwdDCT1.ac i

|
LLLE L LIRS A L LLEL RN

|
bus frwdDCT1.ac LELLEA LU AL UL ELLEA A
| [|

bus frvdDCT1.w8

O TR iy D A

P3IWADCT2.w/8

p3.frwdDCT2 ac

L
bus frwdOCT2 a6 LLLLLEBUBUHU I SR BT
bus.frwdDCT2.w8 LA | L0
p1.quant w8 f [
pi.quantac | 1] Lo
bus.quant ac |y N R | M A | 1
bus.quant w8
p1 entrCod.wa
p1.entrCod.ac [I I
bus entiCod a6 L il B}
bus.entrCod.w8 Ll I

Fig. 10. JPEG encoding stage timing diagram (three processors)

159

Informacije MIDEM 36(2006)3, str. 151-160

J. Dedi¢, M. Finc, A. Trost:
A Framework for High-level System Design Exploration

Because of the regularities discovered in the process of
building the high-level model of the system, in both the
algorithm and architecture domain, we are currently en-
gaged in graphical design capturing system together with
the infrastructure for automatic code generation that we
currently have to obtain by hand. Our long term plans in-
volve implementing the design flow within the graphical
modeling environment. Because of its rich extensibility, the
GME modeling platform is considered as a modeling frame-
work /29/, /30/.

7 Acknowledgment

The research was funded by the Ministry of Education,
Science and Sport of the Republic of Slovenia through the
program P2-0246-Algorithms and the optimization meth-
ods in telecommunications.

8 References

/1/ F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A.
Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic
System Design Environment. |IEEE Computer Society, vol. 36,
no. 4, pp. 45-52, April 2003.

/2/ W. O. Cesario et al. Multiprocessor SoC platforms: A compo-
nent based design approach. IEEE Design and Test of Comput-
ers, Volume 19, Issue 6 (November 2002), pp: 52-63, ISSN:
0740-7475.

/3/ J. Chevalier, O. Benny, M. Rondonneau, G. Bois, M. Abouiha-
mid, F.-R. Boyer (2003). SPACE: A Hardware/Software SystemC
modeling platform including an RTOS, Forum on Design Lan-
guages (FDLO3), Frankfurt, Germany, 09/2003, pp. 704-715.

/4/ A. A. Jerraya, W. Wolf. Hardware/Software Interface Codesign
for Embedded Systems. IEEE Computer Society, vol. 38, no. 2,
pp. 63-69, February 2005.

/5/ L. Kaouane, M. Akil, Y. Sorel, T. Grandpierre. From algorithm
graph specification to automatic synthesis of FPGA circuit: a
seamless flow of graph transformations. FPL Proceedings, Sep-
tember 2003, pp. 934-943.

/6/ D. C. Black &J. Donovan. SystemC from the ground up. Spring-
er, ISBN: 1402079885, June 2004

/77 L. Cai, D. Gajski. Transaction Level Modeling: An Overview.
CODES+ISSS'03, October 2003, Newport Beach, California,
USA, Pp. 19-24, ISBN:1-58113-742-7.

/8/ A.Jantsch, S. Kumar, A. Hemani. Rugby: A Metamodel for Stud-
ying Concepts in Electronic System Design. Design & Test of
Computers IEEE, July-September 2000 (Vol. 17, No. 3), pp.
78-85.

/9/ F. Balarin et al. Metropolis: A Design Environment for Heteroge-
neous Systems. In: A, Jerraya, W. Wolf, editors. "Multiproces-
sor Systems-on-Chips (The Morgan Kaufmann Series in Systems
on Silicon)", Morgan Kaufmann, September 28, 2004, ISBN:
0123852561X, pp. 357-393.

/10/ W. Q. Cesario, A.A. Jerraya. Component-Based Design for Mul-
tiprocessor Systems-on-Chip. In: A. Jerraya, W. Wolf, editors.
“Multiprocessor Systems-on-Chips (The Morgan Kaufmann Se-
ries in Systems on Silicon)’, Morgan Kaufmann, September 28,
2004, ISBN: 012385251X, pp. 357-393.

/11/ A.Jdantsch, S. Kumar, A. Hemani. The Rugby Model: A Concep-
tual Frame for the Study of Modelling, Analysis and Synthesis
Concepts of Electronic Systems. p. 256, Design, Automation
and Test in Europe (DATE '99), 1989.

/12/ OMG UML homepage: http://www.uml.org/

160

/13/ L. Cai, A. Gerstlauer, D. Gajski. Retargetable Profiling for Rapid,
Early System Level Design Space Exploration. Proceedings of
the 41st annual conference on Design automation, 2004, pp.
281 - 286, ISBN:1-58113-828-8.

/14/ A. Bouchhima, S. Yoo, A.A. Jerraya. Fast and Accurate Timed
Execution of High Level Embedded Software Using HW/SW In-
terface Simulation Model. ASP-DAC 2004, Yokohama, Japan.

/15/ A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, M. Sgroi.
Benefits and Challenges for Platform-Based Design. Proceed-
ings of the 41st annual conference on Design automation (DAC
'04), p.p. 409-414, 2004,

/16/ Metropolis homepage: http://www.gigascale.org/metropolis/

/17/ TIMA Laboratory, System-Level Synthesis Group: htitp://
tima.imag.fr/sls/

/18/ SystemC OSCI homepage: http://www.systemc.org/

/19/ Center for Embedded Computer Systems (CECS) at UC Irvine:
SpecC system: hitp://www.cecs.uci.edu/ " specc/
SoC Environment - SCE: http://www.cecs.uci.edu/ ™ cad/
sce.htmi

/20/ SpecC Technology Open Consortium homepage: hitp://
WWw.Specc.org

/21/ AAA methodology and SynDEx homepage: http://www-
rocq.inria.fr/syndex/

/22/ T.Grandpierre and Y. Sorel. From algorithm and architecture spec-
ifications to automatic generation of distributed real-Hime execu-
tives: A seamless flow of graphs transformations. First ACM& IEEE
Intl. Conference on formal methods and models for codesign.
MEMOCODE'03, Mont Saint-Michel, France, June 2003.

/23/ L. Kaouane, M. Akil, T. Grandpierre, Y. Sorel. A Methodology to
Implement Real-Time Applications onto Reconfigurable Circuits.
The Journal of Supercomputing, Volume 30, Number 3, Decem-
ber 2004, pp; 283 -~ 301,

/24/ A.A.Jerraya. Long Term Trends for Embedded System Design.
EUROMICRO Symposium on Digital System Design (DSD 2€04),
Rennes, France, Sept. 2004.

/25/ B. Grattan, G. Stitt, and F. Vahid. Codesign-Extended Applica-
tions. 10th International Symposium on Hardware/Software
CoDesign, pp. 1-6, Estes Park, CO, May 2002.

/26/ D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt, F. Vahid. Profiling
Tools for Hardware/Software Partitioning of Embedded Applica-
tions. Proc. ACM Symp. On Languages, Compilers and Tools for
Embedded Systems (LCTES 2003), San Diego, CA, June 2003.

/27/ V. Bhaskaran, K. Konstantinides. image arid Video Compression
Standards. Second Edition. Kluwer Academic Publishers, 1997.

/28/ Independent JPEG Group: hitp://www.ijg.org

/29/ GME project homepage: http://www.isis.vanderbilt.edu/
Projects/gme

/30/ A. Ledeczi, et al. The Generic Modeling Environment. Workshop
on Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

JoZe Dedi¢, B.Sc.,
joze.dedic@fe.uni-lj.si,

Matjaz Finc, M.Sc.,
matfaz.finc@fe.uni-lj.si,
Assistant Prof., Dr. Andrej Trost,
andrej.trost@fe-uni-lj.si

University of Ljubljana

Faculty of Electrical Engineering,
Trzaska 25, 1000 Ljubljana, Slovenia
Tel: +386 1 4768 351

Prispelo (Arrived): 29. 05. 2006, Sprejeto (Accepted): 08. 09. 2006

