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Abstract: As technology advances, options for realization of heterogeneous systems increase. Designers use a variety of hardware (HW) and software
(SW) co-design methodologies in order to meet application constraints as fast as possible. The paper presents a graphical modeling framework used for
high-level modeling and design-space exploration of heterogeneous systems. The framework provides designer graphical elements for using modeling
concepts from system modeling libraries. Graphical modeling relieves the designer of the manuaktyping source code and thus hides many details of
system-level design languages that normally need to be taken care of. The graphical framework also provides different constraint checks during modeling
and automatically generates an executable model for evaluation of a heterogeneous system. Our case study exemplifies the use of the framework and
shows what information is obtained from an executable model built on a high-level of abstraction. Evaluation of results serves as a basis for further design
decisions. Graphical modeling enables rapid changes in the model and thus speeds-up design-space exploration.

Graficno okolje za raziskovanje nacrtovalskega prostora
na nivoju sistemov

Kjuéne besede: abstrakcija, modeliranje, raziskovanje nadrtovalskega prostora, visokonivojsko nadrtovanje.

lzviedek: S tehnologkim napredkom se poveduje nabor moznih realizacij heterogenih sistemov. Nacrtovalci za ¢imprejénje izpolnjevanje nacrtovalskih
zahtev uporabljajo Sirok spekter metodologij za soCasno nacrtovanje strojne in programske opreme. Clanek predstavija graficno modelimo okolie za
modeliranje in raziskovanje nacrtovalskega prostora heterogenih sistemov. To okolie omogoca nacrtovalcu uporabo grafiénih elementov pri modeliranju
konceptov iz knjiznic za modeliranje na sistemskem nivoju. Graficno okolje nacrtovalca razbremenjuje ro¢nega pisanja programske kode, tako da mu ni
ved potrebno poznati todne sintakse ukazov programskih jezikov za modeliranje na sistemskem nivoju. Okolie med izdelavo modela preverja njegovo
skladnost z razlicnimi omeijitvami. Po kondanem modeliranju heterogenega sistema, za njegovo ovrednotenje okolje avtomatsko ustvari izvrsljiv model.
Uporaba okolja je prikazana na praktiénem primeru. Prikazano je, katere informacije dobimo iz izvréljivega modela zgrajenega na visokem nivoju abstrak-
cije. Ovrednoteni rezultati predstaviiajo podlago nadaljnjim nacrtovalskim odlogitvam. Graficno modelirno okolje omogoca hitre spremembe modela in
tako pospesi raziskovanje nacértovalskega prostora.

1 Introduction 2 Design space exploration

Advances in technology provide various options for reali-
zation of embedded systems. Designers are encouraged
to use a variety of HW and SW implementation technoio-
gies in order to meet application constraints and provide
quick time-to-market solutions. The increasing complexity
of modern embedded systems requires new design meth-
odologies and system-level design tools /1/.

Many research studies are concentrated on the issues of
HW/SW co-design, co-simulation and various optimization
techniques. The research activity is slowly drifting away from
modeling heterogeneous aspects of the system towards
system description on a higher abstraction level /2/.

This paper will present a design framework for system-lev-
el design space exploration. The presented framework is
used for a quick evaluation of design decisions in the first
stages of the design process. The evaluation is based on
the results obtained from a high-level model of the system
composed in a graphical framework.
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HW and SW components of digital systems are designed
by using specialized languages. The HW description lan-
guage VHDL /3/ or Verilog is used for design and imple-
mentation of HW components and the C or C++ is used
for SW description. These languages are mature and pro-
vide automatic implementation and various optimization
possibilities.

On the system level, we need tools and languages for
modeling systems composed of HW and SW components.
The result of research in this area is several system level
design languages (SL.DL) and HW/SW co-design method-
ologies /4/.

A typical design flow starts with a high-level system model
containing architecture description, functionality descrip-
tion and mapping information /5/. During design-space
exploration, the model is repeatedly evaluated and changed
until the application constraints are met. If the design meth-
odology supports different levels of abstraction, we have
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to repeat design-space exploration on each level. In each
level we add new information thus lowering the level of
abstraction. Finally, a description of HW and SW compo-
nents prepared for automatic implementation tools is ob-
fained.

2.1 SystemC Design Flow

The SystemC is a system-level description language based
on the C++ language. The programming language C++ can
be used also as an extensible object-oriented modeling lan-
guage. The SystemC extends the capabilities of the C++ by
enabling modeling of hardware descriptions /6/, /7/.

The SystemC language is implemented as a C++ class li-
brary. It adds important concepts to the C++ such as con-
current processes execution, modeling timed events and
hardware data types. The SystemC enables designer to
describe the whole system model in one language, verify it
by using the same language, and further refine it all the
way to the implementation level (typically the register trans-
fer level). A system can be modeled at the behavioral or
architectural level and then iteratively refined to the regis-
ter transfer level.

Building a detailed model of an embedded system in the
SystemC can be a very time-consuming task. In order to
speed-up the design space exploration process, we need
to identify important modeling concepts for the model eval-
uation at the current abstraction level. When a satisfactory
model is obtained, more details can be described (for ex-
ample timing and communication) and the design-space
exploration is repeated on a lower level of abstraction /5/.
Model refinement continues until all the details necessary
for implementation are obtained.

In this paper we will focus on design exploration on the
highest abstraction level. In the first stage of the design
process we can identify some concepts repeatedly need-
ed by designers for any new model. A model of an em-
bedded system is composed of HW (architecture) and SW
(functionality) units. SW units are running on the model
architecture using its resources. SW can be further mod-
eled as a composition of some tasks. A high-level archi-
tectural model contains execution (processing), commu-
nication and data storage units. To relieve the designer of
the burden of repeatedly implementing models of these
basic concepts in the SystemC, system modeling libraries
supporting them were developed in our Laboratory /8/,
/9/. They provide wrappers for modeling functionality and
architecture on a high-level of abstraction.

System functionality is intuitively described as a network
of tasks. The tasks are modeled in terms of architectural
resource usage and no actual algorithm is specified. Each
task is assigned an execution unit responsible for charac-
terizing the cost of executing services (e.g. time, energy
and size by means of logical blocks or transistors count).
Execution and communication units are parts of the archi-
tecture description.

A library with functionality wrappers provides mechanisms
for modeling parallel task execution. Event modeling is used
for triggering task execution. From the functionality point
of view, the task execution is limited only by their data de-
pendency. The maximum level of parallel operations that a
specific algorithm permits is first examined and later de-
creased by applying restrictions of execution units. When
more than one task specifies the same execution unit, it is
up to the execution-unit scheduling policy to determine the
outcome of such request.

An architecture-wrappers library provides support for high-
level modeling of architectural resources. Using these wrap-
pers, designers can instantiate and connect any number
of hardware units in their model and build an architectural
model. Concepts of execution and communication units
present HW resources and give the designer only informa-
tion about architecture resource utilization in interaction
with algorithm functionality.

One of the integral parts of our libraries is also a built-in
support for logging relevant information about the system
during execution of simulation. The system modeling librar-
ies enable a component-based construction of the system
model at a higher abstraction level. The concept of com-
ponents promotes reuse of the already developed models
which can leverage design productivity.
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Fig. 1. Design flow using a system modeling library

The design-space exploration flow starts by composing a
system model containing descriptions of architecture and
functionality by using prepared wrappers from the system
modeling library (see Figure 1). The model composition
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Fig. 2. Graphical framework for design space exploration

process can be divided into four steps:

- In the first step, the designer builds functionality. He/
she defines descriptions of each task (time estima-
tions for HW resource usage) and its time dependen-
cy (task-start triggers).

- in the second step, the designer determines the sys-
tem architecture.

- In the third step, the designer specifies mapping of all
tasks to appropriate architecture resources.

- In the final step, the designer defines the necessary
simulation settings (e.g. simulation step size, max. sim-
ulation time, which variables to log into waveforms,
and settings for reports of resource utilization).

The design flow continues with compilation of the system
model together with wrappers and the SystemC library. An
executable model is obtained which produces upon exe-
cution waveforms and resource utilization files.

In the next stage, data relevant for further design decisions
(e.g. resource utilization, task being idle because of re-
source contention) are evaluated. Evaluation results are
compared with the system specification constraints. if they
are not satisfactory, the designer repeats the design cycle
with a different system implementation.

During design-space exploration various system implemen-
fations can be relatively easy to build and feedback about
their evaluations results can be used for finding a path to-
wards a solution best meeting system constraints /8/, /9/.
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2.2 Graphical Design Flow

While the system modeling libraries provide a great sup-
port for simulation and evaluation, the designer still needs
to manually describe the system by means of coding. Con-
sequently, this means that coding has to be changed in
each repetition of the design cycle, which is an error-prone
process. For designers this still represents a heavy bur-
den for quick and efficient design space exploration.

To simplify and speed-up the process of building a system model
and enable its faster exploration we developed a domain-spe-
cific graphical modeling framework (GF). The framework ena-
bles a graphical creation of a high-level system model and in-
terpretation of the model into the SystemC source code. The
system architecture is described by inserting and interconnect-
ing reusable library components in a graphical framework. The
system functionality is defined in tasks written in the SystemC
and presented as blocks in the graphical framework. Connec-
tions are used for a graphical presentation of the tasks time
dependency and mapping to architectural resources.

The modeling framework also supports simulation settings,
selection of reports and variables being logged during sim-
ulation execution and definition of stimulators for simulating
external signals that this model is dependent of. The graph-
ical framework performs different syntactic checks during
model building and interpretation phase thus minimizing
designer errors. In this way it greatly helps designers to build
an appropriate model more quickly. Automation of compila-
tion and execution stages is also supported.
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3  Graphical modeling framework

Graphical modeling environments are used extensively in
different domain-specific areas (e.g. Matlab/Simulink for
signal processing).

When a system-model developer decides to switch from
the design language to a graphical framework, he/she can
take one of the two different approaches; either starts de-
veloping a new domain-specific GF from the ground up or
using one of the already developed generic graphical frame-
works that can be configured for particular domain-specif-
ic needs. Each approach has some advantages and dis-
advantages over the opponent.

The first approach allows the developer to fully control his/
her design. As developing such framework is quite expen-
sive, this approach is limited to applications with large po-
tential market. The cost of the second approach is lower
and the developer’s control over the framework is limited.
Only toolsets offered by a selected generic framework can
be used. This approach is much more appropriate for ap-
plications needing only a small amount of installations.

Open source graphical modeling environments found suit-
able for us are Eclipse Graphical Editing Framework /10/
and Generic Modeling Environment (GME) /11/. We de-
cided to use GME since it is more mature, offers very good
user support through online forum and provides tools for
easy integration of the interpreter for translating the graph-
ical model.

3.1 Generic Modeling Environment - GME

The Generic Modeling Environment (GME) /12/ is a con-
figurable toolkit used for creating domain-specific mode-
ling, model analysis, model transformation and program
synthesis environments. The configuration is accomplished
through meta-models specifying the modeling paradigm
(modeling language) of the application domain. The mod-
eling paradigm contains all the syntactic, semantic and
presentation information regarding the application domain.
It defines concepts used to construct models, their rela-
tionship, organization and graphical presentation, and rules
governing model construction.

The modeling paradigm is created by configuring a meta-
model using the GME meta-modeling language. Meta-
models are used to automatically generate target domain-
specific environment. An interesting aspect of this approach
is that the environment itself is used to build meta-models.
This top-level environment is called a Meta-metamodel.

The generated domain-specific environment is then used to
build domain models that are stored in the model database.
They are used to automatically generate applications or to
synthesize input to different Commercial Off-The-Shelf (COTS)
analysis tools. This process is called model interpretation.

Figure 3 depicts how GME is configured to suit domain-
specific modeling environment needs. The role of the meta-
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Fig. 3. Configuration of GME needed to obtain a
domain-specific modeling framework

user is to construct a domain-specific meta-model| with all
syntactic, static semantic and presentation information re-
garding this specific domain. The meta-modeling para-
digm is based on the Unified Modeling Language (UML)
/14/. The syntactic definitions are modeled using pure
UML class diagrams and the static semantics are speci-
fied with constraints using the Object Constraint Language
(OCL). This process needs to be done just once and the
developer of a domain-specific modeling framework takes
over the role of a meta-user. Users of this domain-specific
framework can build their specific models according to
rules defined in the meta-model.

. Y J [pr i o
Task L - ExseUnit : Bus

“<hodet» G [ <2xiodete> Gl <aodetos
FileNameTask.  field 57 -
DataYoProtess feld '_J
HainThread field j

305 (0.7

FileNarneBus | field

FileMameExecUnit: feld

*

Task2ExecUnit Task2Bus
<sConngdtione> <<Connection=>

SRl
TASK '/
Task_2 ‘ ey

EXEC, e
UNIT| e -~
TASK ——-J AVR_MCU
|
Task_32 Task_4

Fig. 4. Creating a domain-specific modeling
framework

135



Informacije MIDEM 37(2007)3, str. 132-141

K. Perko, A. Trost:

Graphical Framework for System Level Design Space Exploration

Figure 4 illustrates a snippet of the UML meta-modeling
paradigm and its actual corresponding presentation in
GME. The curvy arrows show how individual modeling el
ements and their relations are defined by different parts of
the meta-model.

GME has a built-in set of generic concepts: folders, mod-
els, atoms, connections, roles, constraints and aspects.
These concepts are the main elements used by the meta-
model developer. We will not make a detailed presenta-
tion of all of them as this would exceed the scope of this
paper. The reader can find it in /12/, /13/. We will just
focus on the concept of aspects. Aspects provide visibility
control. They are used to allow models to be constructed
and observed from different viewpoints. Existence of parts
of the domain in a particular aspect is determined by the
meta-model. Each part can be either visible or hidden. The
concept of aspects allows the user to employ just the parts
suited for a selected viewpoint and hide all the others irrel-
evant for it.

GME also provides high-level C++ and Java interfaces for
writing plug-in components to traverse, manipulate and
interpret graphical models into an appropriate text descrip-
tion suiting as input to COTS analysis tools. The interpret-
er needs to be written by the meta-user because interpret-

er must be able to translate graphical models built accord-
ing to the meta-model.

3.2 Building paradigm

To configure GME for specific needs of our high-level sys-
tem modeling, we built a meta-mode! containing informa-
tion of all the concepts supported in our system modeling
libraries. As mentioned above, the libraries provide wrap-
pers for creating abstract HW resource units (execution
and communication units) and wrappers for abstract task
creation. Tasks serve for creating a description of algo-
rithm functionality.

Figure 5 shows a part of our meta-model designed by us-
ing generic concepts of the GME environment and static
UML diagram. For clarity of presentation the only most
important concepts of our system-level modeling method-
ology are presented. The meta-mode! enables a model of
a typical embedded system on a high abstraction level to
be made-up as a composition of:

- at least one execution unit (ExecUnit),
- any number of communication units (CommUnit), and
- at least one task (Task).
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Fig. 5.  Snippet of our meta-model/
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The restrictions for the numbers of instances in the actual
model are set by multiplicity constraints (e.g. constraint for
the ExecUnit is set to: “1..*”). These three units are direct-
ly compatible with wrappers in our system modeling librar-
ies. The meta-model also defines possible connections
between these elements. The designer can make just the
connections permitted in the meta-model. The connections
shown in Figure 5 are:

- ExecUnit2CommUnit: with these connections the
designer defines the communication units available
for a selected execution unit. Generally an execution
unit can have more than one communication unit and
many different execution units can share the same
communication units. Instances of execution and com-
munication units connected together compose sys-
tem architectural resources.

- Task2Task: with these connections the designer de-
fines the order of task execution. The order is gov-
erned by the tasks’ data dependency and the direc-
tion from the source to destination has to be followed.
Instances of the tasks connected together with the
Task2Task connections compose system functional
description.

- Task2ExecUnit. with these connections the design-
er assigns execution units responsible for execution
of a selected task. Each task can be assigned to only
one execution unit.

- Task2CommUnit: with these connections the design-
er defines the communication units available for data-
manipulation operations of tasks. Generally, a task can
use more than one communication unit, but only those
available to the assigned execution unit can be used.
This means that the designer can select only between
those communication units that have been previously
attached with ExecUnit2CommUnit to the execution
unit. Actual constraints for creation of these connec-
tions are implemented in a syntactic check performed
before starting the model interpretation.

Two blocks representing the GME concepts of sets are
also shown in Figure 5. The sets are used for selecting
and grouping object instances in the system model. With
the set WaveformTrace the designer defines which HW
resources will be traced during simulation. Muitiple Wave-
formTrace sets with different members can be used. Each
of them represents a different VCD (Value Change Dump)
waveform file. A ConsoleLog set defines the HW resourc-
es used for printing the resource utilization log. This infor-
mation is gathered and printed after the actual simulation
ends.

Besides the presented blocks, the meta-model contains
also some other elements required for model construction
and simulation setup. All of them are listed in Table 1. The
event splitter and event joiner are used for defining the
order of task execution. The event joiner performs an ad-
dition of multiple input events when starting a specific task
depends on execution ending of multiple tasks. Event split-

ter triggers multiple tasks in a certain order and can be
used for modeling a SW scheduler. Start and stop events
are used for control of the simulation process. External
event-generator elements serve for imitating input signals
coming from the surroundings where our system will be
operating.

The concept of aspects in GME provides visibility control.

The aspects allow models to be constructed and viewed

from different viewpoints. They show only elements rele-

vant in a particular aspect. In our meta-model we imple-
mented four different aspects in which a model of an em-
bedded system can be viewed.

- In the task triggering aspect, the designer enters func-
tionality of the system by placing and connecting task
instances. The simulation setup elements (start and
stop events) and external-event generators are also
defined in this aspect.

- In the architecture aspect, instances of hardware re-
sources (execution and communication units) are
placed and connections ExecUnit2CommUnit are
defined.

- The mapping aspect serves for mapping tasks to ap-
propriate hardware resources. Only connections
among the already defined instances can be made.

- In the simulation setting aspect, WaveformTrace and
ConsoleLog set elements are instantiated and their
appropriate members defined.

Table 1 lists all of the implemented elements of our meta-
model in conjunction with the visibility aspects. Even if a
specific element is visible in more than one aspect, it can
be instantiated or modified only in its primary aspect. The
primary aspect is denoted with a shadowed cell.

"~ Aspect |Task Simulation
Visibility ™

Task

Event Splitter

. . Architecture |Mapping .
—.__|Triggering bping Settings

Event Joiner

Execution Unit
Bus

Start Event
Stop Event

External Event Gen.

Waveform Trace

Console Log (usage)

Table 1. Visibility of elements depends on the aspect

For connecting all the elements together, we defined prop-
er connections in the meta-model. As mentioned above,
we did not describe all of them since this is not crucial for
understanding the idea of our approach. At this point it
needs just to be noted that the possibility of making con-
nections also depends on the aspect. All the possible con-
nections implemented in our meta-model and the ability of
making them dependent on a particular aspect, are pre-
sented in Table 2.
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\ Aspect |Task . .
. - ) . Architecture | Mapping

Connection Triggering

Task2Task °

Task2Event Splitter o

Task2Event Joiner °

EventJoiner2EventSplitter °

External EventGenerator2 Task °

StartEvent2Task °

Task2StopEvent °

Task2ExecUnit °

Task2CommUnit °

ExecUnit2CommUnit o

Table 2. Possibility of making connections depends on
the aspect

3.3 Model interpretation

Very important part of our graphical modeling framework
is the model interpreter. The GME provides high-level C++
and Java interfaces for writing plug-in components to
traverse, manipulate and interpret models. The purpose of
the interpreter is to translate all information captured in the
graphical model into a textual description.

We designed an interpreter which produces a source code
description of the system components compatible with the
SystemC and our system modeling libraries. The interpret-
er is capable of handling all the concepts defined in our
meta-model. It is written in the C++ and based on the MFC
library.

Before an actual interpretation begins, different syntactic
and semantic checks are performed to verify the graphical
model. Errors are reported and the designer is guided to
repair the model. The interpreter generates the SystemC
source code together with appropriate project files for au-
tomatic compilation and linking. Finally, an executable de-
scription of the system model is obtained.

4  Case study

To see how our graphical modeling framework operates in
practice, system-level modeling of an existing real-time
embedded system will be presented. Since the embed-
ded system is actually already built, its performance can
be extracted from the implementation model or measured
in the system. Performance estimation before actual im-
plementation was not possible since no modeling frame-
work suitable for heterogeneous system simulation was
available at the time. We will show that using our graphical
framework for modeling the observed system on a high
abstraction level enables performance estimation before
the implementation is made. The framework allows very
easy exploration of different system implementations.

The case study presents an lllumination and Camera Con-
troller (ICC) /15/ used in computer vision applications for
high-speed control of illumination units and triggering line
cameras. This is a typical control-oriented embedded sys-
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tem where two position encoders are used for triggering
events and computing outputs in real time. A USB commu-
nication port is available for setting the operating parame-
ters.

Figure 6 shows a hardware platform for implementation of
the ICC. The available hardware resources include an AVR
microprocessor, CPLD, USB transceiver, RAM data mem-
ory and some other peripheral devices. As this system
operates in a time-critical environment, it is crucial to as-
sure that it operates as a hard real-time system. For all these
reasons it is reasonable to develop it at the system-level.
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Fig. 6.  Platform of illumination and camera controller

41 Model construction

Construction of the ICC model on the high abstraction lev-
el was performed in four aspects using graphical elements
from the meta-model.

In the first aspect, functionality of the ICC is defined. Func-
tionality of the system can be divided into eight different
tasks presented in Figure 7. Tasks TOH and T0S serve for
setting the operating parameters after system start-up and
for communication with the operator. Task TOH performs
communication with the USB transceiver and passing of
the parameters to task TOS which configures the micro-
processor. For simulating the parameter setting right after
power-up, a start event element Event_T0 is used.

Operation of the ICC is triggered by two external encod-
ers: absolute position encoder (APE) and incremental po-
sition encoder (IPE). We used two external event genera-
tor elements AbsEnclRQ and IncEnciIRQ for modeling APE
and IPE, respectively. Task 77 reads IPE events and trig-
gers tasks T2 and T3A. Task T2 reads new illumination
and camera control data from RAM and sends them to the
output bus. Since the IPE does not give an absolute posi-
tion, task T3A performs actual re-calculation of the inspect-
ed object position based on the data obtained from both
encoders. Task T3B reads the data from the APE and per-
forms transformation from the Gray to binary code. The
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new value of the object position is calculated in task T3C.
Tasks T3A and T3C generate output events when a spec-
ifled position boundary is reached. The events are com-
bined into the EventJoiner connected to task 73D. This
task generates page trigger signals for cameras and re-
sets the illumination control. The output event is in our
model connected to the Event Stop element for simula-
tion purposes.
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EXT. m_ewThreadDore
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GEN.
I I o Srer
AbEFIORD T3B T30 Event_Stor

Fig. 7. Functionality description in the task triggering
aspect

The possible parallel execution of the tasks is limited by
their data dependency and available HW resources. The
hardware resources are defined in the architecture aspect
by placing instances of execution and communication units.
The microprocessor contains only one execution unit ca-
pable of executing many different software tasks. On the
other hand, the CPLD device can implement more special
purpose execution units operating in parallel, but is limited
with its size.

in the proposed model, tasks TOH, T1, T2 and T3B are
implemented in CPLD. The architecture description con-
tains four CPLD and one AVR execution unit instances, as
presented in Figure 8. The ICC platform communication
buses McuBus, DataBus and QutBus are also instantiat-
ed and connected to appropriate execution units.

(o
I JEXEC, EXEC.
m UNIT UNIT
NS
MouBus AVR CPLD_T1
(0
B ]

EXEC. OU\tB/US -EXEC. EXEC.
UNIT /m\ UNIT UNIT
CPLD_TOH L a P— CPLD_T2 CPLD_T3E
N
DataBus

Fig. 8. Architecture of ICC on a high abstraction level

Mapping of the tasks to execution and communication units
is actually defined in the mapping aspect, as shown in Fig-
ure 9. Each task is mapped to one execution unit and zero
or more communication units. The actual use of the com-
munication units is defined in the task description. Tasks
TOS, T3A, T3C and T3D are assigned to execution unit
AVR representing the microprocessor in the actual ICC
system. All other tasks have their own execution units. It
should also be mentioned that task T2 can use two com-
munication units (DataBus and OutBus).

I
T3D T34
I

l
)

AVR T0S WcuBus

2
CNCHC

CRPLD_TOH Databus

EXEC.
UNIT | -

CPLD_T2 T2 OutBus

EXEC.,
UNIT l

CPLD_TH T1

EXEC.|
UNIT |

CPLD T3B T3B

Fig. 9. Mapping tasks on architecture resources

At this point et us briefly explain how the tasks are actually
described in SystemC. The task model is defined in terms
of architectural resource usage and no actual algorithm is
specified. Figure 10 lists a high-level description of task
T2. This task reads data from the data bus and sends it to
the output bus. In order to transfer a block of 8 bytes, the
process is repeated eight times.

for (int i=0; i<8; i++)
{ // 8x - for each D/A channel
m_pExecUnit ->GetData(this,4,false, s
(ICommUnit*) &DataBus, -1);
// gets data from data storage
// uses DataBus
// need four cycles
m_pExecUnit ->WriteData(this,1,false,
(ICommUnit*) &OutBus, -1);
// write data to D/A converter
// uses OutBus
// needs one cycle

}
Fig. 10. High-level description of task T2 in SystemC
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The predefined methods GetData and WriteData from our
system modeling libraries are used for modeling data trans-
fer. The designer needs to supply the pointer to an appro-
priate communication unit and estimation of the cycle du-
ration. Both data transfer requests are performed through
execution unit interface (m_pExecUnit). The libraries also
provide methods for modeling and estimation of computa-
tional tasks (e.g. Add, Mult, Wait) which can be used for
high-level task descriptions.

An image from the simulation setting aspect is shown in
Figure 11. A set named WaveVCD_MCU is selected and
its members (both external-event generators, execution unit
AVR and communication units McuBus and OutBus) are
shown. All the other architectural resources are shadowed.
In this way, the designer defines resources used for pro-
ducing VCD traces and console log files during mode! ex-
ecution.

EXEC.
UNIT
AVR
EXT.
EVENT
GEN.
IncEncl=Q OutBus
EXT.
EVENT
GEN. ‘ ’
AbsEnciRQ SRR McuBus

WAVE
TRACE

WaveVCD MCU

Fig. 11. Selecting hardware resources for waveform
traces

4.2 Results

System model evaluation results are obtained after inter-
pretation, compilation and execution of the designed graph-
ical model. Their analysis provides basis for further design
decisions.

Table 3 summarizes a part of the utilization log regarding
the microprocessor (AVR) and the bus McuBus that trans-
fers data to the CPLD device. The table is split into the
architectural part and functionality part (Tasks). The archi-
tectural part shows the resource execution time (RET), i.e.
summation of the time the services are required from a
specific resource. Complementary, the functionality part
presents the task active and wait timings {(in % of RET).
The numbers stated in the active column represent the
percentage of the time a specific task is being actively ex-
ecuted on a specific resource. Similarly, the numbers stat-
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ed in the wait column represent the time a specific task
has to wait for a specific resource to become available -
this is the time interval during which a task may be execut-
ed regarding data dependency, but its execution is not start-
ed because of the unavailability of HW resources.

Architecture AVR McuBus
RET([ns] 358 144 134 500

Tasks active wait Active wait
TOS [% RET] 26.8 0 59.5 0
T3A [% RET] 2.1 5.1 / /
T3C [% RET] 1.3 0 33 0
T3D [% RET] 69.8 0 37.2 0
total [ns] 552 644

Table 3. Utilization log for AVR and McuBus

Analysis of the results from Table 3 shows that the AVR
microprocessor is active for about 65% of the simulation
time and McuBus is active for about 24% of it. Task 73D
requires most of the processors active time (69.8%) and
produces 37.2% of the McuBus activity. Waiting can be
observed for task T3A (5.1%) caused by the resource con-
tention.

If utilization of a particular resource is not found appropri-
ate, the mapping on architectural resources can be revised.
If the real-time constraints are still not met, the functional-
ity description can be revised (e.g. revise algorithm).

The timing diagram, as presented in Figure 12, provides
detailed information for the model evaluation. The actual
waiting time during resource contention and task execu-
tion times can be observed and used for verification of real-
time constraints. Under resource contention, task T3A4, for
example, waits 2030ns for an execution unit to become
available, but it takes only 84ns to actually execute it.

5 Conclusion and future work

We present a graphical modeling framework used for high-
level modeling of heterogeneous systems. It provides
graphical design elements for using modeling wrappers
from system modeling libraries. Graphical modeling relieves
the designer of manual typing the source code and thus
hides many details of the SystemC code that normally need
to be taken care of. Thus the designer can put more effort
on actual modeling. Our graphical framework also provides
different constraint checks during modeling and integrates
support for simulation settings. When modeling is com-
pleted, an executable model is automatically generated to
simulate the system behavior on a high abstraction level.
Our case study exemplifies the use of our framework and
shows information obtained from the executable model built
on a high-abstraction level. Evaluation of this information
serves as a basis for model evaluation and further design
decisions. Graphical modeling enables rapid changes in
the model (e.g. changes in the mapping aspect can give
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Fig. 12. Timing diagram of selecied tasks execution
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er, ISBN: 1402079885, June 2004
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