
UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 41(2011)4, Ljubljana

257

HARDWARE IMPLEMENTATION OF AN EARLIEST DEADLINE
FIRST TASK SCHEDULING ALGORITHM

Domen Verber

University of Maribor, Faculty of Electrical Engineering and Computer Sciences,
Maribor, Slovenia

Key words: Embedded systems, real-time, task scheduling, EDF, FPGA.

Abstract: Task scheduling in complex hard real-time systems produces interference during the normal operation of the application, prolongs the reac-
tion times, reduces throughput, and makes temporal analysis of the system more difficult. A coprocessor performing functions of the operating system is
proposed, in order to cope with this. The paper presents the implementation of an Earliest Deadline First (EDF) task-scheduling algorithm with hardware
means (specifically with the FPGA device). This solution to a great deal eliminates the impact of the scheduling during the normal application execution.
In addition, because it is implemented in hardware, it outperforms any software implementation. Two solutions are presented with different trade-offs
regarding execution time and silicon consumption.

Aparaturna izvedba razvrščanja opravil po strategiji
najbližjega skrajnega roka

Kjučne besede: Vgrajeni sistemi, realni čas, razvrščanje opravil, EDF, FPGA.

Izvleček: Razvrščanje opravil v kompleksnih sistemih, ki delujejo v strogem realnem času, vpliva na obnašanje med izvajanjem aplikacije, podaljšuje
odzivne čase, zmanjšuje prehodnost in otežuje časovno analizo izvajanja opravil. Da bi se temu izognili, predlagamo ko-procesor, ki bi izvajal funkcije
operacijskega sistema. V članku je opisana izvedba algoritma razvrščanja po strategiji EDF (po najbližjem skrajnem roku) z uporabo strojne opreme
(natančneje na osnovi programirljivih vezij - FPGA). Ta rešitev v veliki meri eliminira vpliv razvrščanja med normalnim izvajanjem aplikacije. Poleg tega je
zaradi diskretne aparaturne izvedbe hitrejše od katere koli programske. V članku sta predstavljeni dve rešitvi, ki ustrezata različnim kompromisom glede
hitrosti izvajanja in porabe prostora na vezju.

1. 	 Introduction
Embedded computer systems have become an important
part of everyday life, and will have more and more influence
in the future. They appear in industrial applications, cars,
home appliances, entertainment electronics, etc. They are
becoming increasingly ubiquitous, and we hardly notice
them anymore. Because of such growth in importance,
some other previously unobserved aspects of embedded
systems are becoming more significant. An increasing
number of embedded computer systems are being used in
applications, where improper functionality may cause large
financial losses or may even endanger human lives. Such
systems need to be dependable and must react to events
within strict time restrictions. As a state-of-the-art, proper
construction of such systems is, as yet, more art than en-
gineering, and the increasing complexities of such systems
makes these things even worse (Ebert et al. (2009)).

This paper deals with real-time embedded systems. In such
systems, the required functionality must be performed in a
timely fashion; i.e. regardless of the situation in the system,
certain operations must be completed within the predefined
time interval. This can only be achieved with proper man-
agement of the tasks. Traditionally, this is performed by
the operating system. However, proper management of
tasks in an embedded system may be a complex and
time-consuming procedure that interferes with the normal

operation of the system, especially if it is performed on the
same processor as the tasks are executed. Because of
this, it would be of benefit if such a load could be reduced
or eliminated altogether.

One solution is to employ a co-processor that can perform
the functionality of the operating system in parallel to the
application’s execution. The co-processor only interacts
with the application when its sequence of tasks needs to be
rearranged. Such a solution also decreases the complexity
of system design and the analysis of those temporal circum-
stances that may occur within the system. It also decreases
the minimum reaction times and increases the throughput
of the system. Nowadays, multi-core processor solutions
are available and are becoming more and more popular
within embedded systems. Therefore, any implementation
where one of the processors’ cores is dedicated solely to
operating system operations is feasible.

There are two basic kinds of implementation using such
a co-processor. Firstly, an additional standard (micro)
processor can be used dedicated solely to performing
the tasks of the operating system. However, because of
the complexities of algorithms for real-time operating sys-
tems, it may perform poorly irrespective of its processing
power. Although not discussed in this paper, in addition
to task scheduling, the co-processor must also perform
other functionalities of the operating systems (e.g. tasks

258

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ...Informacije MIDEM 41(2011)4, str. 257-263

synchronization, inter-task communication, etc.), which
also influences their overall performances. Communica-
tion with the main processor must be synchronized with
the co-processor’s activities, which may additionally delay
the reaction. Such solutions are well known and have been
implemented for some time (Halang (1986), Stankovic
(1991), Cooling (1993), and others).

The second solution is to employ hardware implementa-
tion that is dedicated to operating system functionalities.
This approach has become feasible through advances
in solid-state technology, especially FPGAs. It virtually
eliminates any impact of the operating system during the
normal application execution, for several reasons. Firstly,
the operating system’s functionality may be divided into
independent parts, which are then implemented, in paral-
lel, as separate processes on a single hardware device.
Secondly, synchronization with the main processor can
also be implemented asynchronously to other functional-
ities and, thus, introduce much less overhead. In addition,
because it is implemented with hardware means, this ap-
proach outperforms any software implementation regarding
speed. An “OS-on-a-chip” may be used with less powerful
processors allowing cheaper and more power-efficient
solutions. Operation of such a device can also be formally
verified and certified for use at higher safety-integrity levels
than the programmed implementation. Furthermore, such
a device may serve additional purposes. For example, it
can be used as an intelligent I/O device, it may implement
communication layers in distributed control systems, etc.
An example of this, in combination with software and hard-
ware parts, and the middleware functionality, was studied
and successfully implemented in the IFATIS project (IFATIS
(2005)). Further improvements are expected using the new
approach presented in the paper.

This paper focuses on the hardware implementation of one
of the most important parts of an operating system, task
scheduling. Nevertheless, this part has the most influence
on any temporal behaviour of the systems. The hardware
implementation of the algorithm is carried out using a Field-
Programmable Gate Array (FPGA) device. However, for the
production phase, ASIC or custom-built chips would be
more cost-effective.

The first part of the paper introduces the tasks and task
scheduling for hard real-time embedded systems. The second
part describes the implementation of such algorithm based
on the Earliest Deadline First (EDF) scheduling strategy. Two
solutions are presented with different trade-offs regarding
execution time and silicon consumption are presented.

2. 	 Tasks and task scheduling

An embedded application usually consists of several com-
puting processes or tasks. Typically, there are much more
tasks than processing facilities to execute them, and some
tasks are executed sequentially on a specific process-
ing unit. In order to execute tasks effectively, a proper

schedule (or arrangement) of tasks needs to be found that
conforms to certain restrictions. This process is known
as task scheduling. Task scheduling can be performed in
advance (a priori), for simple and static applications. For
example, in a so-called cyclic executive, a set of tasks is
executed periodically. During each cycle, all active tasks
are executed sequentially. It is in the hands of the developer
to choose a period such that all tasks finish execution prior
to the start of the next cycle. However, in dynamic systems
where the task load frequently changes, this simple scheme
is inadequate. A task may be dormant (inactive), ready for
execution (active) or being executed on the processor. An
active task may be temporarily suspended during execu-
tion due to the unavailability of certain system resources
or because of the need for synchronizations with other
tasks, etc. In this case, the schedules of the tasks must
be planned dynamically.

Traditionally, some kind of priority is used to determine
which task must be executed next. An active task with the
highest priority is always executed first. If needed, tasks
with lower priority may be temporarily suspended to al-
low the running of more important ones. However, those
priority-based scheduling strategies are inadequate for hard
real-time systems. In such systems, a started task must be
finished prior to a certain predetermined deadline, regard-
less of the conditions in the system. Therefore, a schedule
of tasks must be set-up in such a way that all tasks meet
their deadlines. This is done by taking into account their
execution times and other time-delaying factors in the
system. If they exist, such a schedule is called ‘feasible’.
Several deadline-driven scheduling methods do exist.
The so-called rate-monotonic scheduling strategy can be
used for those multitasking systems where all tasks are
executed periodically over a-priori known periods. Here
the deadlines of tasks are matched with their periods and
the tasks are then executed according to them: tasks
with shorter periods are executed before those tasks with
longer ones. Repetitive periods of activation are known in
advance for each task. Therefore, these periods may be
used as priorities, and can be employed with priority-based
operating systems. In their widely-recognised publication
(Liu et al. (1973)) Liu and Layland show that rate-monotonic
strategy yields a feasible schedule if processor utilization
is kept below a certain boundary (for instance, for large
number of processors, the processor utilization should be
below 70%). Another deadline-driven scheduling policy is
Earliest-Deadline-First (EDF). It is more flexible than rate-
monotonic strategy and can be used in real-case situations
where both periodic and a-periodic tasks are present. EDF
has also proven to be the best deadline-driven scheduling
strategy for single processor systems regarding feasibility
and optimality of system utilisation. Because of this, this
scheduling strategy was chosen for our research.

2.1 	 EDF task scheduling
In EDF, the task with the shortest deadline must be execut-
ed first. In order to find it, the scheduler must srutinize the

259

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ... Informacije MIDEM 41(2011)4, str. 257-263

list of ready tasks and find the task with the shortest dead-
line. This can be represented by a simple pseudo code:

min_task_index = 0
min_deadline = ∞
for i=1 to n do
 if taskinfo[i].deadline < min_deadline then
 min_deadline = taskinfo[i].deadline
 min_task_index = i
 end if
end for

The taskinfo array holds the information of all ready tasks
in the system. Each element consists of a task identifica-
tion number, worst-case execution time, deadline, etc.
This procedure must be executed every time a new task
becomes active (i.e. ready for execution), suspended or
terminated. Termination or suspension of a task, other than
that currently running, does not influence the schedule.

However, this is only part of the work that must be accom-
plished by the scheduler. Another matter is to prove that
the schedule is feasible (i.e. that all active tasks will meet
their deadlines). For the EDF, the schedule is feasible if the
following equation is fulfilled for each active task:

		 		 (1)

This equation states that the sum of the remaining execu-
tion times li of all tasks Ti scheduled to run before, and
including task Tk, added to the current time, must be less
or equal to the absolute time of deadline ak of task Tk. In
other words, the cumulative workload to be performed
prior and during execution of task Tk must be completed
before its deadline. The tasks are sorted by their ascending
deadlines. Again, the condition determined by the formula
is static, and must be re-evaluated only when one or more
of the tasks change their states.

This schedulability check can be converted into a form with
a double nested loop, illustrated using the next pseudo
code:

cumulative_finish_time = current_time
for i=1 to n do
 for j=i+1 to n do
 if taskinfo[j].deadline < taskinfo[i].deadline then
 swap(taskinfo[i],taskinfo[j])
 end if
 end for
 cumulative_finish_time = cumulative_finish_time+
taskinfo[i].remaining_exec_time
 if cumulative_finish_time > taskinfo[i].deadline then
 raise deadline_violation_error
 end if
end for

The first part of the outer-loop is used to sort the data
according to the tasks’ deadline. As a side effect, the al-
gorithm also puts the task with the shortest deadline in the
first place of the array. Therefore, searching for the task

with shortest deadline can be combined with a feasibility
check. In the second part of the outer-loop, feasibility is
tested by first adding the remaining execution time of the
current task to the cumulative execution time, and then
comparing it to the task’s deadline. Because the remaining
execution times of separate tasks are represented as rela-
tive time intervals, the current execution time is added to
the cumulative execution time at the beginning of the code
in order to allow for comparison with the deadlines, which
are represented as absolute times. It is presumed that the
deadlines of the tasks are converted into an absolute form
once they become active.

For simplicity, the test whether a task is active or not, is not
shown in the code. Usually not all tasks in the system are
active (ready to run) at the same time. Inactive tasks should
not be considered in the scheduling. The comparison of
tasks’ deadlines and the feasibility check should only be
done if both tasks are active. This can be achieved with
additional checks at the beginnings of both loops.

As a drawback, the EDF algorithm described above re-
quires N2/2 iterations (for the N active tasks) which is more
than, for example, with priority based task scheduling; in
order to find the task with the highest priority, only N itera-
tions are required.

2.2 	 Modification of the EDF algorithm for 	
	 hardware implementation
In theory, the basic EDF scheduling algorithm can be eas-
ily translated into any hardware synthesis language (e.g.
System C or HDL code). However, we found that ordinary
in-memory sorting could be very inefficiently implemented
in the hardware. Simple hardware circuits are optimal when
operating Boolean and integer quantities, therefore, the
entire task’s information should be transformed into these
two types. Furthermore, only simple operations can be
usually implemented in the hardware. Complex operations
would require several steps for the executing and consum-
ing more hardware resources. Even some integer arithmetic
operations (e.g., comparison and addition) would consume
considerable amounts of silicon. Therefore, the goal is to
minimize the complexity, and reduce the number of steps
of the code. In the pseudo-code above, the deadline com-
parison in the inner-loop requires two read and two write
operations in the table (if swap operation is optimized). The
basic sort algorithm should be modified in order to reduce
the read/write operations One possible modification is
shown in the next pseudo code:

cumulative_finish_time = current_time
for i=1 to n-1 do
 moved_data = taskinfo[i]
 min_data = moved_data
 min_index = i
 for j=i+1 to n do
 curr_data = taskinfo[j]
 if curr_data.deadline < min_data.deadline then
 min_data = curr_data

260

 min_index = j
 end if
 end for
 taskinfo[min_index] = moved_data
 taskinfo[i] = min_data
 cumulative_finish_time = cumulative_finish_time+ min_
data.remaining_exec_time
 if cumulative_finish_time > min_data.deadline then
 raise deadline_violation_error
 end if
end for

This code utilizes modified version of a so-called straight
selection sorting. The role of the inner-loop is to find the
task with the shortest deadline. When such a task is found,
it is placed at the beginning of the table. During each itera-
tion of the outer- loop, one element of the array is being
sorted. The feasibility check remains the same as before.

Temporary variables such as min_data, min_index, etc.,
can be efficiently implemented in the hardware by means
of registers. The whole algorithm is now executed as a
sequence of simple assignment and arithmetic operations.
In the inner-loop only one read operation remains (with an
additional read and two write operations outside the loop).
Furthermore, because the information needed for the EDF
schedulability test is already in the min_data variable, an
additional read operation can be avoided. The time and
memory complexity of this version of the algorithm remains
the same as before. However, the total execution time of the
outer-loop’s body is reduced significantly, and translation
into the HDL language is much more efficient.

2.3 	 Parallelization of the algorithm
Further optimizations of the EDF scheduling algorithm and
feasibility test can be achieved if some of the operations
are performed in parallel. Obviously, this approach requires
multiple processing resources. It cannot be implemented
in software using a single processor. However, it can be
easily implemented in hardware.

In our case, the first item to be optimized is the inner-loop.
If we can eliminate the inner-loop altogether by executing
all repeated steps as a single operation, the EDF algorithm
may be executed in just N iterations (i.e., the time complex-
ity is O(n)). However, there is data dependency between the
loop iterations, e.g., the content of the min_data variable
in one iteration of the loop depends on the values from the
previous steps. With the given algorithm, the only available
optimization technique we can employ is to execute differ-

ent operation of the loop in pipeline fashion. The pipeline
technique is a well-known approach to speed-up instruction
execution within the microprocessors. Whilst one piece
of information is being processed during one stage, other
data element is being processed within another stage.
The number of stages depends on the number of differ-
ent operations to be executed sequentially. Because the
speed of the pipeline depends on the slowest stage, it is
preferable that the work is divided equally between different
stages. Where there is no data dependency between two
or more operations, they can be executed simultaneously.
For example, in previous algorithm, the write operation and
the feasibility check at the end of the outer-loop can be
performed in parallel.

An example of such parallelization for 4 tasks is illustrated
on Figure 1.

The inner-loop is divided into four stages: data read, com-
parison, EDF feasibility check, and data write. During com-
parison of one element of the table, another element can be
read. In addition, the feasibility check can be performed at
the same time with the write operation. In this way, we can
significantly reduce the execution times. However, the time
complexity of the algorithm remains the same.

Certain other kinds of sorting should be used for further im-
provement of the code. We could also eliminate in-memory
sorting altogether. One way to do this is to use an auxiliary
table where an ordered list of tasks is maintained. This list is
incrementally built from data taken from the original taskinfo
table; the tasks’ data are taken from one table and placed
at the proper place in the other one. The pseudo code for
this approach would be:

for i=1 to n do
 curr_data = taskinfo[i]
 pos = i
 for j=1 to n-i do
 if tasklist[j].deadline>curr_data.deadline then
 pos = j
 break
 end if
 end for
 for j=n-i downto pos do
 tasklist[j+1]=tasklist[j]
 end for
 tasklist[pos] = curr_data
end for

The tasklist table is the auxiliary table previously mentioned.
In it, only data relevant to the EDF algorithm is kept. One

Fig. 1: 	 Example of pipeline execution of EDF algorithm for four tasks.

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ...Informacije MIDEM 41(2011)4, str. 257-263

261

element of the taskinfo table is taken at the beginning of the
loop. Then, the proper place for this task is determined in
the second table by finding the position of the first element
with the later deadline. From this index on, we shift all ele-
ments of the list to the end of the structure. In this way, we
prepare a place in which new data is put.

At first glance, the complexity of this algorithm is greater
than the previous one. Indeed, if we implement this algo-
rithm sequentially, more execution cycles probably would
be required than before. On the other hand, in this code,
both inner-loops only have simple bodies. The first loop has
no data dependency in it and it can be easily parallelized
by comparison of the current task’s deadline with those
deadlines already in the table. This can be done in parallel
if a comparator is used with each element of the array. At
first sight, the second loop has obvious data dependency
between the two loop iterations. Some elements of the array
are accessed and modified from two loop iterations. How-
ever, this part of the code is only the sequential program
representation of a shift operation. In hardware architec-
tures, shift registers and queues are frequently used where
pieces of data are moved in a similar way. Therefore, the
second loop can be implemented by linking the elements
of the taskinfo table in serial fashion.

This approach also requires modification of the feasibility
check. In comparison to previous scenarios, where data is
considered to be in ordered fashion, it is now taken from
the original table in random order. For the feasibility check,
this would require repetitive summation of the remaining
execution time according to (1). In order to avoid this, the
attributes of the tasklist table have to be expanded with a
new variable, which keeps a sum of the remaining execution
times for all task prior to and including the current one. This
attribute stands for the role of the cumulative_finish_time
variable in previous cases. Every time new task information
is put onto the list, its remaining execution time must then
be added to all following elements on the list. Notably, these
are the same elements as shifted before. In order to obtain
the total remaining execution time for the current task, its
value is summed with the value of the element before it.
Because the deadlines are expressed in absolute form
and the execution times are relative intervals, they must be
properly converted. This can be done by adding absolute
current time to the execution time of the first element on the
list. Later on, this value will eventually propagate through
all elements on the list.

The parallel version of the EDF algorithm may be summa-
rized as a sequence of four steps, repeated for each active
task in the system:

Step 1: Compare the deadlines of all elements on the list
with the current one and mark elements with a greater
deadline.

Step 2: Shift all marked elements to the end of the list by
copying all the data. Update (set) the mark for the last ele-
ment on the list to be included in the next step.

Step 3: Fill the gap with the current task’s information. Add
the remaining execution time of the current task to the cu-
mulative execution time for all marked elements. If the first
element on the list is updated, set its current cumulative
execution time to the values of the current system time.

Step 4: Compare the cumulative execution times with the
corresponding deadlines and mark all elements where the
deadline would be violated.

An additional step that invalidates all elements on the list is
also required. However, this step is done only once at the
beginning of the process.

Each step has a fixed execution time, therefore in this way,
the time complexity of the EDF algorithm becomes O(n).
Further improvements are possible if some of the steps are
executed in parallel. If we have the resources for fast com-
parison during actions 1 and 4, each first and the second
pair of steps, can be executed in parallel.

3.	 Experimental hardware 			
	 implementation of edf algorithm
Two hardware implementations of EDF scheduling algo-
rithm were tested using a FPGA device. In the first experi-
ment, the optimized version of the algorithm was translated
into the HDL language by hand. The pipeline approach was
used to speed-up the execution. In the second experiment,
the version with the sorted list of tasks was implemented
by using a digital schematic design. The basic elements
of the design were taken from the existing components
library. Xilinx’s Spartan2E devices were used during the
experiments (Xilinx (2009)). This is an entry-level FPGA
device with lower operational frequencies and relatively
smaller amounts of configurable logical blocks.

The taskinfo table was implemented using dedicated
memory blocks (called BRAM), which can be found in all
modern FPGA devices. BRAM consists of a small amount
(several Kb) of memory elements, which can be configured
to have differed bus sizes. Several BRAM block were used
in parallel to achieve even wider bus sizes. In this way, it
was possible to read or write all components of a single
taskinfo element at the same time. BRAM blocks were
also accessible from the experimental platform. There is
no direct equivalent of the for loop in hardware. However,
it is possible to design counters that generate memory
addresses according to the code in the algorithm. The
arithmetic operations were performed directly using the
HDL code in the first case, and with dedicated comparison
components in the second case.

The block diagram, when implementing the first version
algorithm, is shown in Figure 2.

Deadline and execution times were kept in two dedicated
RAM blocks. The loop-generator generates the values of
the loop index variables, which are then converted into
memory addresses by the Read module. Compare and

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ... Informacije MIDEM 41(2011)4, str. 257-263

262

EDF modules perform the comparison and EDF feasibility
checks, respectively. The control block is used as an in-
terface between the FPGA and the main processor. Using
this block, the main processor starts the EDF scheduling
execution. Control block synchronizes the execution of
other blocks by properly setting several control signals. The
results of the algorithm (index of the task with the shortest
deadline and the error status) are also held here.

To allow parallel execution and pipeline implementation,
each block is implemented as a set of processes in the
HDL code. The HDL version of the loop-generator for loop
variable j is:

-- Loop counter j
process (rst,clk,running)
begin
 if rst = ‘1’ or running = ‘0’ then
 j <= “000000”;
 elsif rising_edge(clk) then
 if j = itemcount1 then
 j <= i + “000001”;
 else
 j <= j + “000001”;
 end if;
 end if;
end process;

The itemcount1 variable is set to the number of elements
in the table at the beginning. Later, it is decremented within
every iteration of the main loop. This variable represents
the number of elements that must be processed by the
inner loop.

For discrete implementation of the EDF algorithm’s second
version, for each element in the task list, an appropriate
digital logic has been implemented and is represented as
a single component. Then several of such components

were linked together to implement the task list. This is il-
lustrated in Figure 3.

Fig. 3. 	 Hardware implementation of ordered list of
	 tasks’ information

In each step, a single task is evaluated and put into the
proper position on the list. The information of the cur-
rent task is put on the common bus. Cur_TID, Cur_DL,
Cur_Extis represents the index of the task, its deadline and
its remaining execution time, respectively. Then, a series
of control signals (not shown in the picture) are generated
to execute different steps of the EDF algorithm for each
cell, as described in the previous section. The outer-loop
generator, the memory blocks and the control logic are not
shown. These are similar to the first case.

A logic diagram for each task list element is shown in
Figure 4.

Fig. 4. 	 Logic diagram of the EDF evaluation cell

Each cell has two sets of inputs. One set is fed by the data
of the current task and another is feed by data from the
previous cell. Two input streams of data are merged into a
single output stream to be used during the shift step. The
second set of inputs of the first cell is connected to some
constant values and to the current time counter, as shown
in Figure 3. In this way, no extra logic is required for the
first cell on the list. There is one set of outputs connected
to the following cell and two logic signals that mark whether
the content of the cell should be shifted (DL_mark) or if
there is a deadline violation error (Err_mark).

Each element consists of three registers that contain differ-
ent attributes of the task list. These registers are connected
to the inputs through multiplexers to allow values to be
filled-in, either from the common bus or from the previous

Fig. 2: 	 Block diagram for first implementation of EDF
	 algorithm.

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ...Informacije MIDEM 41(2011)4, str. 257-263

263

cell. Each block is logically divided into three parts. The
first (the upper) part tracks the index of the task that is in
a particular place on the list. The second (middle) part is
responsible for deadline comparison and for marking the
cell for the shift operation. The third (lower) part of the cell
calculates cumulative execution time and marks deadline
violations.

During the first step of the algorithm, the comparator in the
middle part of the cell is used to determine the elements
with the later deadline (larger value). In the second step,
the registers of the marked cells are shifted to the right and
the current values are put into the gap. In the third step,
the current execution time on the common bus is added to
the cumulative remaining execution times of marked cells.
This is implemented with dedicated addition components
in the third part of the cell. In the last step, the cumulative
execution times are compared (with yet another compara-
tor) and any violations are signalled. By using both phases
of the clock signal, we managed to reduce the execution
time of the steps to two clock cycles of the FPGA device.
Finally, the tasks are sorted in ascending fashion according
to their deadlines. For the task identification, their IDs are
associated with the task deadlines and sorted accordingly.
The ID register of the first cell contains a task identification
that must be executed next.

4. 	 Results of the experiments

The first version of the algorithm, with pipeline execution
optimization described at the beginning of the chapter,
takes approximately 140 slices for its implementation.
This number is independent of the number of tasks. In
the second approach, each EDF evaluation cell requires
approximately 30 slices of FPGA device. However, in this
case the amount of silicon depends linearly on the number
of tasks to be evaluated. For example, in the case of 32
tasks, approximately 950 slices are required – almost 7
times more than in the first case. The control logic and
loop generator takes an additional 12 slices. This number
only slightly increases if more tasks are evaluated. These
results are in favour with the first solution if the amount of
silicon resources is limited.

On the other hand, the execution time of the first algorithm
for 32 tasks is about 600 basic clock cycles and only
around 65 in the second one. The second approach is
almost 10 times faster than the first one. Only if the num-
ber of tasks is small (less than three), the execution times
of both solutions become roughly the same. Therefore,
the second approach should be considered if hardware
resources are not a problem.

5. 	 Conclusion and future work

Current state-of-the-art technology allows for the hardware
implementation of software algorithms, even for low-cost

embedded system solutions. Operating systems have
well-defined and relatively limited sets of functionalities.
Therefore, it is easy to imagine having an “OS-on-a-chip”
solution that may be used in the same way as mathematical
co-processors two decades ago or as graphical copro-
cessors are used today. They may even become a part of
general processors in the future.

In our future work we will try to achieve the implementation
of an EDF algorithm with fixed time execution independent
of the number of task (i.e., we want to achieve the O(1)
temporal complexity). This is possible if the outer loop is
eliminated altogether. Thiscan be achieved if the taskinfo
array is maintained as a sorted list continuously, instead of
rebuilding it each time a new task becomes active. How-
ever, in this case, in addition to task activation, other task
operations performed by the operating system must be
considered. First, when a task ends its execution, it must
be removed from the array. The tasks following it must be
shifted towards the beginning of the array. In addition, if a
task becomes suspended due to some synchronization
mechanism, it must remain on the table but it must not be
considered for the running on the processor. Furthermore,
some counters for the remaining execution times of the
tasks in the list must be updated periodically. All of this
significantly increases the silicon consumption and the
feasibility of the approach may be questionable.

References
/1/	 Liu C.L. and Layland J.W. (1973). Scheduling algorithms for

multiprogramming in a hard real-time environment. Journal of
the ACM, 20(1), 46–61.

/2/	 Halang, W. A. (1986). Implications on Suitable Multiprocessor
Structures and Virtual Storage Management when Applying a
Feasible Scheduling Algorithm in Hard Real-Time Environments.
Software--Practice and Experience, 16(8), 761-769

/3/	 Stankovic, J. A. and K. Ramamritham (1991) The Spring Kernel:
A New Paradigm for Real-Time Systems. IEEE Software, 8, 62-
72.

/4/	 Cooling J. (1993) Task Scheduler for Hard Real-Time Embedded
Systems. Proceedings of Int’l Workshop on Systems Engineering
for Real-Time Applications. IEE, Cirencester, London. 196-201.

/5/	 IFATIS (2005). IFATIS - Intelligent Fault Tolerant Control in Inte-
grated Systems. http://www.ist-world.org/

/6/	 Ebert C. and Salecker J. (2009). Embedded Software-Technol-
ogies and Trends. IEEE Software, 26(3), 14-18.

/7/	 Xilinx (2009). http://www.xilinx.com

Domen Verber

University of Maribor, Faculty of Electrical Engineering
and Computer Sciences, Maribor, Slovenia (e-mail:

domen.verber@uni-mb.si)

Prispelo: 19.11.2010	 Sprejeto: 24.11.2011

D. Verber:
Hardware Implementation of an Earliest Deadline First Task ... Informacije MIDEM 41(2011)4, str. 257-263

