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Abstract: Task scheduling in complex hard real-time systems produces interference during the normal operation of the application, prolongs the reac-
tion times, reduces throughput, and makes temporal analysis of the system more difficult. A coprocessor performing functions of the operating system is 
proposed, in order to cope with this. The paper presents the implementation of an Earliest Deadline First (EDF) task-scheduling algorithm with hardware 
means (specifically with the FPGA device). This solution to a great deal eliminates the impact of the scheduling during the normal application execution. 
In addition, because it is implemented in hardware, it outperforms any software implementation. Two solutions are presented with different trade-offs 
regarding execution time and silicon consumption.

Aparaturna izvedba razvrščanja opravil po strategiji 
najbližjega skrajnega roka

Kjučne besede: Vgrajeni sistemi, realni čas, razvrščanje opravil, EDF, FPGA.

Izvleček: Razvrščanje opravil v kompleksnih sistemih, ki delujejo v strogem realnem času,  vpliva na obnašanje med izvajanjem aplikacije, podaljšuje 
odzivne čase, zmanjšuje prehodnost in otežuje časovno analizo izvajanja opravil. Da bi se temu izognili, predlagamo ko-procesor, ki bi izvajal funkcije 
operacijskega sistema. V članku je opisana izvedba algoritma razvrščanja po strategiji EDF (po najbližjem skrajnem roku) z uporabo strojne opreme 
(natančneje na osnovi programirljivih vezij - FPGA). Ta rešitev v veliki meri eliminira vpliv razvrščanja med normalnim izvajanjem aplikacije. Poleg tega je 
zaradi diskretne aparaturne izvedbe hitrejše od katere koli programske. V članku sta predstavljeni dve rešitvi, ki ustrezata različnim kompromisom glede 
hitrosti izvajanja in porabe prostora na vezju.

1. 	 Introduction
Embedded computer systems have become an important 
part of everyday life, and will have more and more influence 
in the future. They appear in industrial applications, cars, 
home appliances, entertainment electronics, etc. They are 
becoming increasingly ubiquitous, and we hardly notice 
them anymore. Because of such growth in importance, 
some other previously unobserved aspects of embedded 
systems are becoming more significant. An increasing 
number of embedded computer systems are being used in 
applications, where improper functionality may cause large 
financial losses or may even endanger human lives. Such 
systems need to be dependable and must react to events 
within strict time restrictions. As a state-of-the-art, proper 
construction of such systems is, as yet, more art than en-
gineering, and the increasing complexities of such systems 
makes these things even worse (Ebert et al. (2009)).

This paper deals with real-time embedded systems. In such 
systems, the required functionality must be performed in a 
timely fashion; i.e. regardless of the situation in the system, 
certain operations must be completed within the predefined 
time interval. This can only be achieved with proper man-
agement of the tasks. Traditionally, this is performed by 
the operating system. However, proper management of 
tasks in an embedded system may be a complex and 
time-consuming procedure that interferes with the normal 

operation of the system, especially if it is performed on the 
same processor as the tasks are executed. Because of 
this, it would be of benefit if such a load could be reduced 
or eliminated altogether. 

One solution is to employ a co-processor that can perform 
the functionality of the operating system in parallel to the 
application’s execution. The co-processor only interacts 
with the application when its sequence of tasks needs to be 
rearranged. Such a solution also decreases the complexity 
of system design and the analysis of those temporal circum-
stances that may occur within the system. It also decreases 
the minimum reaction times and increases the throughput 
of the system. Nowadays, multi-core processor solutions 
are available and are becoming more and more popular 
within embedded systems. Therefore, any implementation 
where one of the processors’ cores is dedicated solely to 
operating system operations is feasible.

There are two basic kinds of implementation using such 
a co-processor. Firstly, an additional standard (micro) 
processor can be used dedicated solely to performing 
the tasks of the operating system. However, because of 
the complexities of algorithms for real-time operating sys-
tems, it may perform poorly irrespective of its processing 
power. Although not discussed in this paper, in addition 
to task scheduling, the co-processor must also perform 
other functionalities of the operating systems (e.g. tasks 
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synchronization, inter-task communication, etc.), which 
also influences their overall performances. Communica-
tion with the main processor must be synchronized with 
the co-processor’s activities, which may additionally delay 
the reaction. Such solutions are well known and have been 
implemented for some time (Halang (1986), Stankovic 
(1991), Cooling (1993), and others).

The second solution is to employ hardware implementa-
tion that is dedicated to operating system functionalities. 
This approach has become feasible through advances 
in solid-state technology, especially FPGAs. It virtually 
eliminates any impact of the operating system during the 
normal application execution, for several reasons. Firstly, 
the operating system’s functionality may be divided into 
independent parts, which are then implemented, in paral-
lel, as separate processes on a single hardware device. 
Secondly, synchronization with the main processor can 
also be implemented asynchronously to other functional-
ities and, thus, introduce much less overhead. In addition, 
because it is implemented with hardware means, this ap-
proach outperforms any software implementation regarding 
speed. An “OS-on-a-chip” may be used with less powerful 
processors allowing cheaper and more power-efficient 
solutions. Operation of such a device can also be formally 
verified and certified for use at higher safety-integrity levels 
than the programmed implementation. Furthermore, such 
a device may serve additional purposes. For example, it 
can be used as an intelligent I/O device, it may implement 
communication layers in distributed control systems, etc. 
An example of this, in combination with software and hard-
ware parts, and the middleware functionality, was studied 
and successfully implemented in the IFATIS project (IFATIS 
(2005)). Further improvements are expected using the new 
approach presented in the paper. 

This paper focuses on the hardware implementation of one 
of the most important parts of an operating system, task 
scheduling. Nevertheless, this part has the most influence 
on any temporal behaviour of the systems. The hardware 
implementation of the algorithm is carried out using a Field-
Programmable Gate Array (FPGA) device. However, for the 
production phase, ASIC or custom-built chips would be 
more cost-effective.

The first part of the paper introduces the tasks and task 
scheduling for hard real-time embedded systems. The second 
part describes the implementation of such algorithm based 
on the Earliest Deadline First (EDF) scheduling strategy. Two 
solutions are presented with different trade-offs regarding 
execution time and silicon consumption are presented.

2. 	 Tasks and task scheduling

An embedded application usually consists of several com-
puting processes or tasks. Typically, there are much more 
tasks than processing facilities to execute them, and some 
tasks are executed sequentially on a specific process-
ing unit. In order to execute tasks effectively, a proper 

schedule (or arrangement) of tasks needs to be found that 
conforms to certain restrictions. This process is known 
as task scheduling. Task scheduling can be performed in 
advance (a priori), for simple and static applications. For 
example, in a so-called cyclic executive, a set of tasks is 
executed periodically. During each cycle, all active tasks 
are executed sequentially. It is in the hands of the developer 
to choose a period such that all tasks finish execution prior 
to the start of the next cycle. However, in dynamic systems 
where the task load frequently changes, this simple scheme 
is inadequate. A task may be dormant (inactive), ready for 
execution (active) or being executed on the processor. An 
active task may be temporarily suspended during execu-
tion due to the unavailability of certain system resources 
or because of the need for synchronizations with other 
tasks, etc. In this case, the schedules of the tasks must 
be planned dynamically. 

Traditionally, some kind of priority is used to determine 
which task must be executed next. An active task with the 
highest priority is always executed first. If needed, tasks 
with lower priority may be temporarily suspended to al-
low the running of more important ones. However, those 
priority-based scheduling strategies are inadequate for hard 
real-time systems. In such systems, a started task must be 
finished prior to a certain predetermined deadline, regard-
less of the conditions in the system. Therefore, a schedule 
of tasks must be set-up in such a way that all tasks meet 
their deadlines. This is done by taking into account their 
execution times and other time-delaying factors in the 
system. If they exist, such a schedule is called ‘feasible’. 
Several deadline-driven scheduling methods do exist. 
The so-called rate-monotonic scheduling strategy can be 
used for those multitasking systems where all tasks are 
executed periodically over a-priori known periods. Here 
the deadlines of tasks are matched with their periods and 
the tasks are then executed according to them: tasks 
with shorter periods are executed before those tasks with 
longer ones. Repetitive periods of activation are known in 
advance for each task. Therefore, these periods may be 
used as priorities, and can be employed with priority-based 
operating systems. In their widely-recognised publication 
(Liu et al. (1973)) Liu and Layland show that rate-monotonic 
strategy yields a feasible schedule if processor utilization 
is kept below a certain boundary (for instance, for large 
number of processors, the processor utilization should be 
below 70%). Another deadline-driven scheduling policy is 
Earliest-Deadline-First (EDF). It is more flexible than rate-
monotonic strategy and can be used in real-case situations 
where both periodic and a-periodic tasks are present. EDF 
has also proven to be the best deadline-driven scheduling 
strategy for single processor systems regarding feasibility 
and optimality of system utilisation. Because of this, this 
scheduling strategy was chosen for our research. 

2.1 	 EDF task scheduling
In EDF, the task with the shortest deadline must be execut-
ed first. In order to find it, the scheduler must srutinize the 
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list of ready tasks and find the task with the shortest dead-
line. This can be represented by a simple pseudo code: 

min_task_index = 0
min_deadline = ∞
for i=1 to n do
   if taskinfo[i].deadline < min_deadline then
      min_deadline = taskinfo[i].deadline
     min_task_index = i
    end if
end for

The taskinfo array holds the information of all ready tasks 
in the system. Each element consists of a task identifica-
tion number, worst-case execution time, deadline, etc. 
This procedure must be executed every time a new task 
becomes active (i.e. ready for execution), suspended or 
terminated. Termination or suspension of a task, other than 
that currently running, does not influence the schedule. 

However, this is only part of the work that must be accom-
plished by the scheduler. Another matter is to prove that 
the schedule is feasible (i.e. that all active tasks will meet 
their deadlines). For the EDF, the schedule is feasible if the 
following equation is fulfilled for each active task:

		  		     (1)

This equation states that the sum of the remaining execu-
tion times li of all tasks Ti scheduled to run before, and 
including task Tk, added to the current time, must be less 
or equal to the absolute time of deadline ak of task Tk. In 
other words, the cumulative workload to be performed 
prior and during execution of task Tk must be completed 
before its deadline. The tasks are sorted by their ascending 
deadlines. Again, the condition determined by the formula 
is static, and must be re-evaluated only when one or more 
of the tasks change their states.

This schedulability check can be converted into a form with 
a double nested loop, illustrated using the next pseudo 
code:

cumulative_finish_time = current_time
for i=1 to n do
   for j=i+1 to n do
     if taskinfo[j].deadline < taskinfo[i].deadline then
       swap(taskinfo[i],taskinfo[j])
     end if
   end for
   cumulative_finish_time = cumulative_finish_time+ 
taskinfo[i].remaining_exec_time
   if cumulative_finish_time > taskinfo[i].deadline then
      raise deadline_violation_error
   end if
end for

The first part of the outer-loop is used to sort the data 
according to the tasks’ deadline. As a side effect, the al-
gorithm also puts the task with the shortest deadline in the 
first place of the array. Therefore, searching for the task 

with shortest deadline can be combined with a feasibility 
check. In the second part of the outer-loop, feasibility is 
tested by first adding the remaining execution time of the 
current task to the cumulative execution time, and then 
comparing it to the task’s deadline. Because the remaining 
execution times of separate tasks are represented as rela-
tive time intervals, the current execution time is added to 
the cumulative execution time at the beginning of the code 
in order to allow for comparison with the deadlines, which 
are represented as absolute times. It is presumed that the 
deadlines of the tasks are converted into an absolute form 
once they become active.

For simplicity, the test whether a task is active or not, is not 
shown in the code. Usually not all tasks in the system are 
active (ready to run) at the same time. Inactive tasks should 
not be considered in the scheduling. The comparison of 
tasks’ deadlines and the feasibility check should only be 
done if both tasks are active. This can be achieved with 
additional checks at the beginnings of both loops.

As a drawback, the EDF algorithm described above re-
quires N2/2 iterations (for the N active tasks) which is more 
than, for example, with priority based task scheduling; in 
order to find the task with the highest priority, only N itera-
tions are required.

2.2 	 Modification of the EDF algorithm for 	
	 hardware implementation
In theory, the basic EDF scheduling algorithm can be eas-
ily translated into any hardware synthesis language (e.g. 
System C or HDL code). However, we found that ordinary 
in-memory sorting could be very inefficiently implemented 
in the hardware. Simple hardware circuits are optimal when 
operating Boolean and integer quantities, therefore, the 
entire task’s information should be transformed into these 
two types. Furthermore, only simple operations can be 
usually implemented in the hardware. Complex operations 
would require several steps for the executing and consum-
ing more hardware resources. Even some integer arithmetic 
operations (e.g., comparison and addition) would consume 
considerable amounts of silicon. Therefore, the goal is to 
minimize the complexity, and reduce the number of steps 
of the code. In the pseudo-code above, the deadline com-
parison in the inner-loop requires two read and two write 
operations in the table (if swap operation is optimized). The 
basic sort algorithm should be modified in order to reduce 
the read/write operations One possible modification is 
shown in the next pseudo code: 

cumulative_finish_time = current_time
for i=1 to n-1  do
  moved_data = taskinfo[i]
  min_data = moved_data
  min_index = i
  for j=i+1 to n do
    curr_data = taskinfo[j]  
    if curr_data.deadline < min_data.deadline then
       min_data = curr_data
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       min_index = j
    end if
  end for
  taskinfo[min_index] = moved_data 
  taskinfo[i] = min_data
  cumulative_finish_time = cumulative_finish_time+ min_
data.remaining_exec_time
  if cumulative_finish_time > min_data.deadline then
     raise deadline_violation_error
  end if
end for

This code utilizes modified version of a so-called straight 
selection sorting. The role of the inner-loop is to find the 
task with the shortest deadline. When such a task is found, 
it is placed at the beginning of the table. During each itera-
tion of the outer- loop, one element of the array is being 
sorted. The feasibility check remains the same as before.

Temporary variables such as min_data, min_index, etc., 
can be efficiently implemented in the hardware by means 
of registers. The whole algorithm is now executed as a 
sequence of simple assignment and arithmetic operations. 
In the inner-loop only one read operation remains (with an 
additional read and two write operations outside the loop). 
Furthermore, because the information needed for the EDF 
schedulability test is already in the min_data variable, an 
additional read operation can be avoided. The time and 
memory complexity of this version of the algorithm remains 
the same as before. However, the total execution time of the 
outer-loop’s body is reduced significantly, and translation 
into the HDL language is much more efficient.

2.3 	 Parallelization of the algorithm
Further optimizations of the EDF scheduling algorithm and 
feasibility test can be achieved if some of the operations 
are performed in parallel. Obviously, this approach requires 
multiple processing resources. It cannot be implemented 
in software using a single processor. However, it can be 
easily implemented in hardware. 

In our case, the first item to be optimized is the inner-loop. 
If we can eliminate the inner-loop altogether by executing 
all repeated steps as a single operation, the EDF algorithm 
may be executed in just N iterations (i.e., the time complex-
ity is O(n)). However, there is data dependency between the 
loop iterations, e.g., the content of the min_data variable 
in one iteration of the loop depends on the values from the 
previous steps. With the given algorithm, the only available 
optimization technique we can employ is to execute differ-

ent operation of the loop in pipeline fashion. The pipeline 
technique is a well-known approach to speed-up instruction 
execution within the microprocessors. Whilst one piece 
of information is being processed during one stage, other 
data element is being processed within another stage. 
The number of stages depends on the number of differ-
ent operations to be executed sequentially. Because the 
speed of the pipeline depends on the slowest stage, it is 
preferable that the work is divided equally between different 
stages. Where there is no data dependency between two 
or more operations, they can be executed simultaneously. 
For example, in previous algorithm, the write operation and 
the feasibility check at the end of the outer-loop can be 
performed in parallel.

An example of such parallelization for 4 tasks is illustrated 
on Figure 1. 

The inner-loop is divided into four stages: data read, com-
parison, EDF feasibility check, and data write. During com-
parison of one element of the table, another element can be 
read. In addition, the feasibility check can be performed at 
the same time with the write operation. In this way, we can 
significantly reduce the execution times. However, the time 
complexity of the algorithm remains the same.

Certain other kinds of sorting should be used for further im-
provement of the code. We could also eliminate in-memory 
sorting altogether. One way to do this is to use an auxiliary 
table where an ordered list of tasks is maintained. This list is 
incrementally built from data taken from the original taskinfo 
table; the tasks’ data are taken from one table and placed 
at the proper place in the other one. The pseudo code for 
this approach would be:

for i=1 to n  do
  curr_data = taskinfo[i]
  pos = i
  for j=1 to n-i do
    if tasklist[j].deadline>curr_data.deadline then
      pos = j
      break
    end if
  end for
  for j=n-i downto pos do
    tasklist[j+1]=tasklist[j]
  end for
  tasklist[pos] = curr_data
end for

The tasklist table is the auxiliary table previously mentioned. 
In it, only data relevant to the EDF algorithm is kept. One 

Fig. 1: 	 Example of pipeline execution of EDF algorithm for four tasks.

D. Verber:  
Hardware Implementation of an Earliest Deadline First Task ...Informacije MIDEM 41(2011)4, str. 257-263



261

element of the taskinfo table is taken at the beginning of the 
loop. Then, the proper place for this task is determined in 
the second table by finding the position of the first element 
with the later deadline. From this index on, we shift all ele-
ments of the list to the end of the structure. In this way, we 
prepare a place in which new data is put.

At first glance, the complexity of this algorithm is greater 
than the previous one. Indeed, if we implement this algo-
rithm sequentially, more execution cycles probably would 
be required than before. On the other hand, in this code, 
both inner-loops only have simple bodies. The first loop has 
no data dependency in it and it can be easily parallelized 
by comparison of the current task’s deadline with those 
deadlines already in the table. This can be done in parallel 
if a comparator is used with each element of the array. At 
first sight, the second loop has obvious data dependency 
between the two loop iterations. Some elements of the array 
are accessed and modified from two loop iterations. How-
ever, this part of the code is only the sequential program 
representation of a shift operation. In hardware architec-
tures, shift registers and queues are frequently used where 
pieces of data are moved in a similar way. Therefore, the 
second loop can be implemented by linking the elements 
of the taskinfo table in serial fashion. 

This approach also requires modification of the feasibility 
check. In comparison to previous scenarios, where data is 
considered to be in ordered fashion, it is now taken from 
the original table in random order. For the feasibility check, 
this would require repetitive summation of the remaining 
execution time according to (1). In order to avoid this, the 
attributes of the tasklist table have to be expanded with a 
new variable, which keeps a sum of the remaining execution 
times for all task prior to and including the current one. This 
attribute stands for the role of the cumulative_finish_time 
variable in previous cases. Every time new task information 
is put onto the list, its remaining execution time must then 
be added to all following elements on the list. Notably, these 
are the same elements as shifted before. In order to obtain 
the total remaining execution time for the current task, its 
value is summed with the value of the element before it. 
Because the deadlines are expressed in absolute form 
and the execution times are relative intervals, they must be 
properly converted. This can be done by adding absolute 
current time to the execution time of the first element on the 
list. Later on, this value will eventually propagate through 
all elements on the list. 

The parallel version of the EDF algorithm may be summa-
rized as a sequence of four steps, repeated for each active 
task in the system: 

Step 1: Compare the deadlines of all elements on the list 
with the current one and mark elements with a greater 
deadline. 

Step 2: Shift all marked elements to the end of the list by 
copying all the data. Update (set) the mark for the last ele-
ment on the list to be included in the next step. 

Step 3: Fill the gap with the current task’s information. Add 
the remaining execution time of the current task to the cu-
mulative execution time for all marked elements. If the first 
element on the list is updated, set its current cumulative 
execution time to the values of the current system time.

Step 4: Compare the cumulative execution times with the 
corresponding deadlines and mark all elements where the 
deadline would be violated.

An additional step that invalidates all elements on the list is 
also required. However, this step is done only once at the 
beginning of the process.

Each step has a fixed execution time, therefore in this way, 
the time complexity of the EDF algorithm becomes O(n). 
Further improvements are possible if some of the steps are 
executed in parallel. If we have the resources for fast com-
parison during actions 1 and 4, each first and the second 
pair of steps, can be executed in parallel.   

3.	 Experimental hardware 			 
	 implementation of edf algorithm
Two hardware implementations of EDF scheduling algo-
rithm were tested using a FPGA device. In the first experi-
ment, the optimized version of the algorithm was translated 
into the HDL language by hand. The pipeline approach was 
used to speed-up the execution. In the second experiment, 
the version with the sorted list of tasks was implemented 
by using a digital schematic design. The basic elements 
of the design were taken from the existing components 
library. Xilinx’s Spartan2E devices were used during the 
experiments (Xilinx (2009)). This is an entry-level FPGA 
device with lower operational frequencies and relatively 
smaller amounts of configurable logical blocks. 

The taskinfo table was implemented using dedicated 
memory blocks (called BRAM), which can be found in all 
modern FPGA devices. BRAM consists of a small amount 
(several Kb) of memory elements, which can be configured 
to have differed bus sizes. Several BRAM block were used 
in parallel to achieve even wider bus sizes. In this way, it 
was possible to read or write all components of a single 
taskinfo element at the same time. BRAM blocks were 
also accessible from the experimental platform. There is 
no direct equivalent of the for loop in hardware. However, 
it is possible to design counters that generate memory 
addresses according to the code in the algorithm. The 
arithmetic operations were performed directly using the 
HDL code in the first case, and with dedicated comparison 
components in the second case.

The block diagram, when implementing the first version 
algorithm, is shown in Figure 2.

Deadline and execution times were kept in two dedicated 
RAM blocks. The loop-generator generates the values of 
the loop index variables, which are then converted into 
memory addresses by the Read module. Compare and 
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EDF modules perform the comparison and EDF feasibility 
checks, respectively. The control block is used as an in-
terface between the FPGA and the main processor. Using 
this block, the main processor starts the EDF scheduling 
execution. Control block synchronizes the execution of 
other blocks by properly setting several control signals. The 
results of the algorithm (index of the task with the shortest 
deadline and the error status) are also held here.   

To allow parallel execution and pipeline implementation, 
each block is implemented as a set of processes in the 
HDL code. The HDL version of the loop-generator for loop 
variable j is:

-- Loop counter j
process (rst,clk,running)
begin
  if rst = ‘1’ or running = ‘0’ then
    j <= “000000”;
  elsif rising_edge(clk) then
    if j = itemcount1 then
      j <= i + “000001”;
    else
      j <= j + “000001”;
    end if;
  end if;
end process;

The itemcount1 variable is set to the number of elements 
in the table at the beginning. Later, it is decremented within 
every iteration of the main loop. This variable represents 
the number of elements that must be processed by the 
inner loop.

For discrete implementation of the EDF algorithm’s second 
version, for each element in the task list, an appropriate 
digital logic has been implemented and is represented as 
a single component. Then several of such components 

were linked together to implement the task list. This is il-
lustrated in Figure 3.  

Fig. 3. 	 Hardware implementation of ordered list of  
	 tasks’ information

In each step, a single task is evaluated and put into the 
proper position on the list. The information of the cur-
rent task is put on the common bus. Cur_TID, Cur_DL, 
Cur_Extis represents the index of the task, its deadline and 
its remaining execution time, respectively. Then, a series 
of control signals (not shown in the picture) are generated 
to execute different steps of the EDF algorithm for each 
cell, as described in the previous section. The outer-loop 
generator, the memory blocks and the control logic are not 
shown. These are similar to the first case.  

A logic diagram for each task list element is shown in 
Figure 4.

Fig. 4. 	 Logic diagram of the EDF evaluation cell

Each cell has two sets of inputs. One set is fed by the data 
of the current task and another is feed by data from the 
previous cell. Two input streams of data are merged into a 
single output stream to be used during the shift step. The 
second set of inputs of the first cell is connected to some 
constant values and to the current time counter, as shown 
in Figure 3. In this way, no extra logic is required for the 
first cell on the list. There is one set of outputs connected 
to the following cell and two logic signals that mark whether 
the content of the cell should be shifted (DL_mark) or if 
there is a deadline violation error (Err_mark).

Each element consists of three registers that contain differ-
ent attributes of the task list. These registers are connected 
to the inputs through multiplexers to allow values to be 
filled-in, either from the common bus or from the previous 

Fig. 2: 	 Block diagram for first implementation of EDF 
	  algorithm.
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cell. Each block is logically divided into three parts. The 
first (the upper) part tracks the index of the task that is in 
a particular place on the list. The second (middle) part is 
responsible for deadline comparison and for marking the 
cell for the shift operation. The third (lower) part of the cell 
calculates cumulative execution time and marks deadline 
violations.

During the first step of the algorithm, the comparator in the 
middle part of the cell is used to determine the elements 
with the later deadline (larger value). In the second step, 
the registers of the marked cells are shifted to the right and 
the current values are put into the gap.  In the third step, 
the current execution time on the common bus is added to 
the cumulative remaining execution times of marked cells. 
This is implemented with dedicated addition components 
in the third part of the cell. In the last step, the cumulative 
execution times are compared (with yet another compara-
tor) and any violations are signalled. By using both phases 
of the clock signal, we managed to reduce the execution 
time of the steps to two clock cycles of the FPGA device. 
Finally, the tasks are sorted in ascending fashion according 
to their deadlines. For the task identification, their IDs are 
associated with the task deadlines and sorted accordingly. 
The ID register of the first cell contains a task identification 
that must be executed next.

4. 	 Results of the experiments

The first version of the algorithm, with pipeline execution 
optimization described at the beginning of the chapter, 
takes approximately 140 slices for its implementation. 
This number is independent of the number of tasks. In 
the second approach, each EDF evaluation cell requires 
approximately 30 slices of FPGA device. However, in this 
case the amount of silicon depends linearly on the number 
of tasks to be evaluated. For example, in the case of 32 
tasks, approximately 950 slices are required – almost 7 
times more than in the first case. The control logic and 
loop generator takes an additional 12 slices. This number 
only slightly increases if more tasks are evaluated. These 
results are in favour with the first solution if the amount of 
silicon resources is limited. 

On the other hand, the execution time of the first algorithm 
for 32 tasks is about 600 basic clock cycles and only 
around 65 in the second one. The second approach is 
almost 10 times faster than the first one. Only if the num-
ber of tasks is small (less than three), the execution times 
of both solutions become roughly the same. Therefore, 
the second approach should be considered if hardware 
resources are not a problem.

5. 	 Conclusion and future work

Current state-of-the-art technology allows for the hardware 
implementation of software algorithms, even for low-cost 

embedded system solutions. Operating systems have 
well-defined and relatively limited sets of functionalities. 
Therefore, it is easy to imagine having an “OS-on-a-chip” 
solution that may be used in the same way as mathematical 
co-processors two decades ago or as graphical copro-
cessors are used today. They may even become a part of 
general processors in the future.

In our future work we will try to achieve the implementation 
of an EDF algorithm with fixed time execution independent 
of the number of task (i.e., we want to achieve the O(1) 
temporal complexity). This is possible if the outer loop is 
eliminated altogether. Thiscan be achieved if the taskinfo 
array is maintained as a sorted list continuously, instead of 
rebuilding it each time a new task becomes active. How-
ever, in this case, in addition to task activation, other task 
operations performed by the operating system must be 
considered. First, when a task ends its execution, it must 
be removed from the array. The tasks following it must be 
shifted towards the beginning of the array. In addition, if a 
task becomes suspended due to some synchronization 
mechanism, it must remain on the table but it must not be 
considered for the running on the processor. Furthermore, 
some counters for the remaining execution times of the 
tasks in the list must be updated periodically. All of this 
significantly increases the silicon consumption and the 
feasibility of the approach may be questionable.
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