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Abstract: Ceramic technologies such as LTCC (Low Temperature Co-fired Ceramic) and thick-film are used widely in electronic circuits 
exposed to harsh environments, for applications in fields such as aerospace, automotive and energy exploration, where, owing to their 
thermal and chemical stability, they have an extensive and successful track record. Recently, the extensive structuration possibilities 
afforded by LTCC have led to its use in sensors, microfluidics and thermal management (hotplates). In the first part of this work, we 
present both new and classical techniques for structuring ceramic devices for thermal management, microfluidics or both. Critical 
aspects for achieving successful structuration and reliable device operation are discussed, such as lamination and sealing techniques, 
materials formulation and selection, as well as thermomechanical design. These considerations are illustrated in the second part of this 
work with several examples: micro-hotplates for various applications, microfluidic coolers, chemical reactors and solid-oxide fuel cell 
(SOFC) components.

Key words: Thick-film technology, LTCC, 3D structuration, microfluidics, thermal management.

3D strukturiranje LTCC in sorodnih tehnologij 
za termično upravljanje in mikro tekočinske 
strukture
Povzetek: Keramične tehnologije, kot je LTCC (keramika z nizko temperaturo žganja) in debeli sloji, se pogosto  uporabljajo v 
elektronskih vezjih, ki so izpostavljena neugodnemu okolju, za aplikacije v vesolju, avtomobilskih in energetskih raziskavah, kjer imajo 
s svojo termično in kemijsko stabilnostjo uspešno in dolgo zgodovino. Velike možnosti strukturiranja, ki jih nudi LTCC so omogočile 
njihovo uporabo v senzorjih, mikro tekočinah in termičnem upravljanju (hotplate – vroča plošča). V prvem delu članka predstavljamo 
klasično metodo strukturiranja keramičnih elementov za termično upravljanje, za mikro tekočine ali oboje. Opisani so kritični vidiki za 
doseganje uspešnega strukturiranja in zanesljivega delovanja, kot je laminacija, tehnike pečatenja, formuliranja in izbora materialov, 
kakor tudi termomehanična oblika.  Te odločitve so v drugem delu članka predstavljene s pomočjo naslednjih primerov: mikro vroča 
plošča za različne aplikacije, mikro tekočinski hladilniki, kemični reaktorji in deli gorivnih celic s trdnim elektrolitom (SOFC).

Ključne besede: debeloplastna tehnologija, LTCC, 3D strukturiranost, mikro tekočine, termično upravljanje.
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1. Introduction

Originally introduced as a chip / multichip module 
packaging and high-reliability circuit technology [1-
4], LTCC has found important additional applications 
in the field of advanced packaging, sensors and mi-
crofluidics. This requires more advanced 3D structura-
tion techniques, required to form features such as thin 
bridges, cavities, membranes, channels and hotplates 
[5-16].

In the green state, LTCC tape is easily shapeable, and 
may be cut and further processed by a wide variety of 
methods (Table 1), which in principle easily allows fea-
tures such as channels, bridges and membranes (Fig-
ure 1). An overview of the resulting LTCC applications 
is given in Table 2 (see also other paper at this confer-
ence [17] for mechanical sensors). The very wide range 
of devices and applications attest for the excellent 3D 
structurability of LTCC.
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However, problems that appear at the different stages 
of processing (handling, lamination and firing, Table 1) 
in practice severely hamper many applications. Moreo-
ver, the properties and limitations of LTCC as a material 
must also be taken into account, such as mechanical 
strength (short- and long-term), chemical durability 
and thermal stability. Also, physical properties such as 
the coefficient of thermal expansion (CTE) and elastic 
modulus are important for device performance.

The purpose of the present work is therefore to give an 
overview of the applications of LTCC structuration, cen-
tred on microfluidics and thermal management, with 
the associated themes:
- Processing issues and how they are resolved
- Properties and limitations of LTCC as a material
- Implications on device design

Figure 1: Example LTCC structures (see table 2) (1-3) 
Meander channel (1) and heater module (2) for gas 
viscosity sensor (3, with membrane) [18-20]; 4) chemi-
cal microreactor with complex fluidic circuit [16, 20]; 5) 
thermal bubble inclinometer (with membrane) [9]; 6) 
cantilever sensor for low forces [9, 16, 21, 22].

Table 1: Methods and operations used in 3D structura-
tion of LTCC.† SVM = sacrificial volume material. # MSM 
/ FSM = mineral / fugitive sacrificial (volume) material.

Operation Methods
Cutting / 
drilling / 
shaping

- Mechanical microdrilling / end  
milling [7, 23]

- Punching / stamping [24]
- Laser cutting of LTCC [24-26]; of  

conductors [27, 28]
- Embossing [24, 29, 30]
- Controlled laser ablation [31]
- Solvent vapour jet cutting [32]
- None (lamination directly around 

SVM†) [7, 33, 34]

Lamination 
methods 
and  
conditions

(LP/HP = 
low-/high-
pressure)

No sacrificial material
- Uniaxial, HP, cold [13, 35]
- Uniaxial, minimal-pressure, cold [36] 

or warm [37]
- Adhesive tape, LP [38, 39]
- Solvent / adhesive paste / adhesive 

solution, LP [12, 40-44]
- Hot-melt adhesive layer, LP [45]
With sacrificial material
- Warm, HP, uniaxial or isostatic  

(standard methods)
Lamination 
order

- All at once (standard procedure)
- Sequence of partial laminations,  

often with different methods/ 
parameters [13, 44, 46, 47]

Firing No sacrificial material or MSM#
- Standard, in air (usually)
With FSM#
- Air (match sintering and burnout 

kinetics) [10, 48-51]
- Air-N2-air (sinter in N2, then oxidise 

FSM) [17, 52]
Post-firing 
operations 
(depending 
on device)

- MSM† removal by chemical 
dissolution [52-57] or mechanical 
blowing [8]

- Screen-printing of materials 
incompatible with co-firing

- Cutting of temporary supports [58 
2012]

- Singulation by dicing or breaking

Table 2: Applications of LTCC structuration techniques 
beyond purely electrical ones. † M(O)EMS: micro (opto)
electromechanical system. # µ-SOFC: micro solid-oxide 
fuel cells.

Field Applications
Advanced 
& high-
reliability 
hermetic 
packaging

- MOEMS† package [59]
- Package + quality control [60, 61]
- MEMS pressure sensor package for 

medical applications [62]
- Active getter module [63] 

Pressure 
sensing

- Piezoresistive (membrane) [64, 65]
- Piezoresistive high-pressure cell  

(direct compression) [20, 66]
- Piezoelectric (resonance) [67]
- Capacitive (membrane) [68, 69]
- Complete piezoresistive pressure 

sensor (+electronics) [15, 17, 70, 71]
Force &  
accel.  
sensing

- Low forces [9, 16, 21, 22]; applied to 
low pressures (indirect) [72]

- Acceleration [17]
Optical  
sensors

- pH [73]
- Absorbance [74] & fluorescence [75]

Flow &  
liquid  
sensing

- Fuel injection (thermal) [76]
- Flow sensor, thermal [17, 71, 77, 78] 

or mechanical [79]
- Thermal bubble inclinometer [9]

Flow con-
trol

- Valve [80]
- Substrate for electrovalves [13]
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Liquid mi-
cro- 
reactors

- Emulsifier [81], dilution device [82]
- Mixer [83, 84]
- Particle synthesis [85]
- Electrochemical [86]
- Polymerase chain reaction [87]
- Photocatalysis [88]
- Integrated, + flow sensing &  

calorimetry [11, 20, 89] / flow &  
pressure & liquid sensing [90]

Gas micro-
reactors

- H2-O2 combustor [91]
- Gas burner with window [41]
- Fuel cell reformer [92, 93]
- Micro-plasma generator [94]

Hotplates - For gas sensing [27, 95-97]
- Scanning microcalorimeter [98]
- Atomic clock module [99, 100]
- Fluidic & thermal package for MEMS† 

µ-SOFC# [101, 102] and µ-thrusters 
[103]

Multi-
sensors 
/-physics

- Flow / pressure / temperature sensor 
for compressed air [46, 104]

- Gas viscosity & thermal conductivity 
sensor [18-20]

Micro-
thrusters

- Liquid fuel [44, 105, 106]
- Solid propellant [107]

2. Processing techniques

The present section reviews the different techniques 
and issues at each stage of processing. Processing is-
sues are usually exacerbated when using fine struc-
tures, such as required for sensitive device.

2.1. Basic processing routes

The most straightforward processing route is the “cut-
and-laminate” one, whereby each LTCC laser is simply 
cut (usually by laser), with the resulting stack then be-
ing uniaxially laminated and fired (Figure 2). This sim-
ple route is feasible for applications involving relatively 
robust structures, where crushing and sagging of layers 
are not a big issue, such as the chemical microreactor 
shown on Figures 5 & 6.

Figure 2: “Cut-and-laminate” structuration of LTCC: 
uniaxial lamination of previously processed sheets be-
tween rigid metal plates.

If slender membranes or bridges are used, sacrificial 
volume materials (SVMs) may be used to avoid crush-
ing / sagging (Figure 3), using uniaxial or (pseudo-)iso-
static lamination.

Figure 3: Filling crushable cavities with SVM, with 
pseudo-isostatic lamination (isostatic or uniaxial also 
possible).

Finally, cavities may be directly created by printing SVM 
onto LTCC, without removing the corresponding vol-
ume from the tape (Figure 4), which requires (pseudo-)
isostatic lamination.

Figure 4: Pseudo-isostatic (similar to isostatic, where 
the bottom face is also deformed) lamination of LTCC 
modules, with printed SVM to create cavities.

2.2. Handling during screen-printing

Structural features such as intricate channels and  thin 
bridges exacerbate the usual difficulties of handling 
fine LTCC tapes. Especially, simply cutting out complex 
channel networks (Figure 6) in one layer is difficult or 
even impossible, as this would structurally separate the 
tape, or weaken it excessively. To get around this issue, 
two techniques are commonly used:
- “Stitching” the fluidic circuit across several lay-

ers allows fabrication of complex and strongly 
meandering structures, as often seen in fluidic 
process devices such as microreactors (Table 2, 
corresponding section; Figure 6), using the clas-
sical “cut-and-laminate” route. This requires an 
additional layer (or two, if crossovers are desired), 
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and creates some additional dead volumes due to 
alignment tolerances.

- Sacrificial volume materials (SVMs) allow “print-
ing” of channels without requiring the tape to be 
cut out: the channel is then formed during or after 
firing by removal of the SVM (Figure 4). However, 
this technique does have restrictions: it requires 
“standard”, high-pressure isostatic or pseudo-
isostatic lamination to deform the LTCC tapes 
around the printed SVM, and results in significant 
deformation of the tapes and of the surface of the 
device [8, 11, 13, 59], which may not be the most 
convenient method for shaping other structures 
such as large cavities. Also, there are practical lim-
its to the achievable aspect ratios, stemming from 
the screen printing process and restricted deform-
ability of the LTCC tapes [14]. Finally, printing large 
amounts of sacrificial material can destroy the tape 
through attack from the SVM paste solvent. How-
ever, recent developments in screen-printing vehi-
cle formulation show progress in formulating SVM 
inks that have low aggressivity towards LTCC tapes, 
and even allow removal of misprints by rinsing in 
water [33, 34, 108].

Figure 5: Chemical microreactor: device (top), LTCC 
module with superposed fluidic layout (middle) and 
complete electrical & fluidic layout (bottom). 12) Inlets 
& heat-up meanders; 3) outlet; 4) flow sensors; 5) bot-
tom alumina heat spreader, below LTCC; 6) alumina 
heat shield for reaction zone. A) Thermistor for body 
temperature; B) thermistor for reaction zone tempera-
ture; C) resistor for heat output calibration.

2.3. Lamination and firing

Optimal lamination is often a compromise: applying 
excessive pressure and temperature can result in de-
formation and crushing of cavities, while the reverse 
yields poor bonding (Figure 7). Several techniques, 
described in section 3, have therefore been developed 
to alleviate this issue in difficult cases: SVMs to protect 
cavities, and “glues” to facilitate lamination.

Figure 6: Chemical microreactor: LTCC layers, in unfired 
state, showing cut-outs for fluidic channels and ther-
mal decoupling of calorimetric reaction zone. 1) Bot-
tom wall; 2) bottom fluidic layer; 3)  fluidic separation 
layer; 4) top fluidic layer; 5) top lid.

A            B

C                 D

Figure 7: Lamination problems in fluidic structures: A) 
crushing of cavities; B) deformations combined with poor 
interlayer lamination below cavity due to absence of pres-
sure; C) poor lamination, at arrow; B) good lamination 
with low deformation, with correct parameters [13].

Firing of slender structures also may lead to deforma-
tions, stemming from shrinkage mismatch between 
LTCC, functional materials and SVM, or simply from sag-
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ging of structures under their own weight. This may 
again be counteracted by SVMs, which however must be 
correctly formulated to avoid imparting deformations 
themselves during LTCC sintering [10, 13, 46, 52, 57].

3. SVM & Adhesive formulations

In addition to the LTCC tape itself and the assorted 
functional materials (conductors, resistors, etc.), 3D 
structuration may use two types of “auxiliary” materi-
als, which are eventually removed during processing: 
1) SVMs and 2) adhesives for low-pressure lamination.

3.1. Sacrificial volume materials (SVMs)

SVMs support the 3D LTCC structure during lamination, 
avoiding crushing, or may even be used to create cavi-
ties by themselves (see 2.1 / Figure 4). If just used to fill 
existing cavities, they tend to add complexity to the 
manufacturing process, but careful design, e.g. limiting 
SVM deposition to just one layer, or special processes 
such as filling with liquid wax [43], reduce this incon-
venient.

A wide variety of SVMs have been investigated (Ta-
ble 3), with carbon-based pastes or tape inserts being 
by far the most common.

Carbon / wax / polymer-based compositions are la-
belled fugitive sacrificial materials (FSMs), as they 
escape during firing, by evaporation, pyrolysis or oxi-
dation to CO/CO2, which may lead to sagging during 
sintering through loss of support. To avoid this issue, 
carbon-based (mostly graphite) materials may be used; 
graphite is “semi-fugitive”, as it is stable to very high 
temperatures in inert atmospheres, and only begins to 
oxidise rapidly above 600-650°C in oxygen-containing 
ones. This allows two strategies (see Table 1, firing):
1 Firing in air, carefully matching sintering of LTCC 

with graphite oxidation kinetics by varying tem-
perature rise rate and graphite particle size [8, 10, 
48-51]

2 Sintering in inert atmosphere: burnout in air, 
up to ca. 600°C, followed by sintering in nitrogen 
(which preserves the graphite), and final oxidation 
of the graphite by switching back to air [17, 52].

Firing in air may be carried out also without restrictions, 
using mineral sacrificial materials (MSMs), which how-
ever requires an additional post-firing chemical or me-
chanical removal step (Table 1). This restricts in practice 
MSMs to open structures such as cantilevers or bridges 
on the surface of substrates [53-57, 109]. Further issues 
lie shrinkage mismatch, chemical interactions and lim-
ited chemical stability of some fired LTCC materials [57].

Table 3: Parameters and their values. † Applied to clas-
sical thick-film technology on Al2O3.

Type Sacrificial volume material (SVM)
FSM 
(fugitive)

- Carbon paste (printed) [10, 33, 34,  
49-52, 108] or tape insert [8, 43]

- Wax, screen-printed [7] or filled as  
liquid [43]

- Kapton foil, laser-ablated [7]
MSM 
(mineral)

- Al2O3 setter tape [8]
- PbO-2SiO2 glass [52]
- CaO-B2O3 [109] ; CaO-borax [53]
- Au [110]
- CaCO3 + C [55]
- MgO-CaB2O4 [57]
- SrCO3† [54]
- MgO-B2O3† [56]

3.2. Lamination adhesives

In many cases, deformations mainly stem from the high 
pressures required to achieve good lamination. Moreo-
ver, simple uniaxial lamination of multilayer structures 
intrinsically faces the issues of low stresses above cavi-
ties (Figure 7B). Therefore, many techniques have been 
investigated to achieve satisfactory lamination quality 
at moderate pressures and temperatures (see Table 1, 
lamination), the most common being 1) application of 
adhesive tapes, and 2) printing of liquid / paste adhe-
sives or solvents.  There are however some drawbacks 
to these methods, as they require careful application of 
the adhesive, and handling of the resulting sticky LTCC 
tape can be quite cumbersome. Therefore, in order to 
facilitate handling, we recently proposed an alternative 
method using hot-melt adhesive layers [45], which are 
first generically deposited onto the LTCC tape. The ad-
hesive is formulated to be tack-free or low-tack in am-
bient conditions, facilitating handling and minimising 
dust pickup, and then melt at moderate (≤60°C) tem-
peratures, allowing low-pressure lamination at moder-
ate temperatures.

During lamination, adhesives interact with the tape, 
and assist binding at low temperatures. The additional 
amount of organic material must be accounted for by 
somewhat lengthening the debinding step. 

4. Materials limitations of LTCC

Fired LTCC material properties are typical of glass-ce-
ramic materials (brittleness, relatively good thermal 
stability), and may be compared to thick-film multilayer 
dielectrics, from which they are derived.
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4.1. Mechanical strength

LTCC has somewhat lower short-term strength than 
alumina, of the order of 300 MPa, depending on the 
grade [111-114]. In sensitive mechanical structures 
such as low-range force and pressure sensors, this is 
offset by a much lower elastic modulus [113, 115], of 
the order of 100 GPa, yielding a comparable strain, i.e. 
resulting signal.

However, ceramics may be susceptible to stress cor-
rosion in the presence of humidity, which must be ac-
counted for in device design. This ageing behaviour is 
more severe in glassy ceramics such as LTCC than in 
standard 96% thick-film grade alumina, with glass-free 
materials such as yttria-stabilised zirconia (YSZ) and zir-
conia-toughened alumina (ZTA) essentially unaffected 
at ambient temperatures. To complicate matters, short- 
and especially long-term strength is affected by over-
lying thick-film materials, an effect that has yet to be 
studied on LTCC [112, 116, 117].

4.2. Chemical durability

Whereas fired LTCC may be expected to be resistant 
to organic solvents, chemical durability in aqueous 
environments shows very strong variations: on the 
one hand, some materials (such as Du Pont 951) allow 
short-term operation (≈1 day) of microreactors with 
aggressive chemicals such as HCl and NaOH at concen-
trations >1 M. On the other hand, 3D structuration of 
LTCC using MSM was found to be hindered by degrada-
tion of LTCC in the relatively weak acetic acid used to 
dissolve the MSM [57]. Other studies also yielded very 
contrasting results, depending the LTCC material [118-
120].

4.3. Thermal stability & expansion

Essentially all common LTCC grades exhibit reasonable 
thermal stability up to ca. 500°C. Above this tempera-
ture, performance depends on the phase assemblage 
and chemical composition, with the more crystalline, 
essentially alkali-free materials exhibiting good me-
chanical stability and high resistivity at temperatures in 
excess of 600°C [115, 121]. This, together with the mod-
erate thermal conductivity and CTE [113-115], allows 
creation of a wide range of hotplate structures (Table 
2).

5. Conclusions

Due to its advantageous properties and relative ease of 
3D structuration, LTCC has recently found wide appli-

cation in fluidic and/or heater structures. This trend is 
expected to intensify, due by advances in process tech-
nology and materials characterisation.
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